# INNOVATIVE ENERGY CONSERVATION SOLUTIONS

An ISO 9001:2015 Certified Organisation, Certificate No:- 1205Q169822

- A: 205, Eco Towers, Shivalik Enclave Sector 125, Greater Mohali-140301
- E: Pankaj@lecsolutions.in
- T: +91-9685613238

DATE February 24, 2023 PLACE OF WORK: CHANDIGARH

No: CERT/2023/09

# Energy, Environment & Green Audit Certificate

Is Issued To

# GOVERNMENT HOME SCIENCE COLLEGE SECTOR 10, CHANDIGARH

for successful completion of Energy, Environment & Green Audit of the College for the Period FY 2022-23, conducted by M/s Innovative Energy Conservation Solutions. This Energy, Environment & Green Audit included Sectoral Audits in the reports i.e., Water, Energy, Waste cum Material, Air Quality & Noise, Biodiversity, outdoor environment, Health & well-being, Activities and Institutional management aspect cover.

The College is certified to have done exceptionally well to conserve energy, environment and ensuring sustainable development for the assessment period.

Duration of Audit: Feb-2022 to Jan-2023

Date of Issue: 24/02/2023

PANKAJ Digately signed by PANKAJ DHOTE Date: 2923 92.34 (27) Innovative Energy Conservation Solutions

Innovative Energy Conservation Selegitiener



Innovative Energy Conservation Solutions

An ISO 9001:2015 Certified Organisation. Certificate No:- 1205Q169822

Thank You



www.iecsolutions.in Pankaj Dhote

# Energy Audit

# **Report of**

# Government Home Science College, Sector-10, Chandigarh



# **Prepared & Submitted by**

INNOVATIVE ENERGY CONSERVATION SOLUTIONS ISO 9001:2015 (Certificate No: 1205Q169822)



# Audit Details

| Report Title          | <ul> <li>Energy Audit Report</li> </ul>                                          |
|-----------------------|----------------------------------------------------------------------------------|
| 🔸 Client Name         | = Government Home Science College,<br>Chandigarh                                 |
| Location of the Plant | = Sector 10-D, Chandigarh. Pincode-<br>160011                                    |
| Name of the Auditor   | Mr. Vijay Kumar Gupta                                                            |
|                       | Chartered Engineer/ Professional/Lead<br>Auditor/Competent Person/Energy Auditor |
|                       | Serial No- 351338                                                                |
|                       | Mr. Pankaj Dhote                                                                 |
|                       | Energy Audit Number: CEA :28926                                                  |
|                       | M. Tech in Energy & Environmental Study                                          |
|                       | Mr. Nikhil Thakur                                                                |
|                       | B. Tech Electrical                                                               |

# ACKNOWLEDGEMENT

Innovative energy conservation solutions (IECS) places on record its sincere thanks to Government Home Science College Sector-10, Chandigarh for entrusting the task of conducting "Energy Audit Study" during Jan-2023.

We hereby express our sincere thanks to Professor Mrs. Sudha Katyal (Principal) and their team, from Government Home Science College Sector-10, Chandigarh for their proactive support and courtesy extended to the IECS team during field study. We also thank other officials from Government Home Science College Sector-10, Chandigarh for their cooperation and support provided during data collection. We are also grateful to all those we interacted with during the audit who gave us some operational insights.

We hereby submit the Energy Audit Report for your reference.

# Table Of Contents

| CHAPT                                                                                           | ER:1                                                                                                     | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                          |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1.1                                                                                             | The P                                                                                                    | roject                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                          |
| 1.2                                                                                             | Gene                                                                                                     | al Details                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                          |
| 1.3                                                                                             | Delive                                                                                                   | erables in the Detail Project Report                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                          |
| 1.4                                                                                             | Metho                                                                                                    | dology                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                          |
| CHAPT                                                                                           | ER:2                                                                                                     | about the college                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                          |
| 2.1                                                                                             | Energ                                                                                                    | y Conservation Activity Taken by the College                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                          |
| CHAPT                                                                                           | ER:3                                                                                                     | Power Supply System and Energy Consumption Pattern                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                         |
| 3.1                                                                                             | Powe                                                                                                     | r Supply System                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                         |
| CHAPT                                                                                           | ER:4                                                                                                     | Study of Ceiling Fans Systems                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                                                         |
| 4.1                                                                                             | Cellin                                                                                                   | g Fans Details                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                         |
| 4.2<br>Basis                                                                                    | ECM#<br>3 27                                                                                             | 1 Replace Existing Ceiling Fans with low wattage Ceiling Fans on Failure Replace                                                                                                                                                                                                                                                                                                                                                                            | ement                                                                                      |
| 4.3<br>Failui                                                                                   | Savin<br>re Repla                                                                                        | g Calculation of ECM#1 Replace Existing Ceiling Fans with low wattage Ceiling Facement Basis                                                                                                                                                                                                                                                                                                                                                                | ans on<br>29                                                                               |
| CHAPT                                                                                           | ER:5                                                                                                     | Study of Lighting Systems                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                         |
|                                                                                                 |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                         |
| 5.1                                                                                             | Install                                                                                                  | ed Lighting Study & performance Analysis                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                         |
| 5.1<br>5.2<br>Repla                                                                             | Install<br>ECM#<br>acemen                                                                                | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis                                                                                                                                                                                                                                                                                                                              | 30<br>30<br>Failure<br>36                                                                  |
| 5.1<br>5.2<br>Repla<br>5.3                                                                      | Install<br>ECM#<br>acemen<br>Savin                                                                       | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED                                                                                                                                                                                                                                                      | 30<br>Failure<br>36<br>37                                                                  |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT                                                             | Install<br>ECM#<br>acemen<br>Savin<br>ER:6                                                               | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED<br>Study of Air Conditioning Systems                                                                                                                                                                                                                 | 30<br>Failure<br>36<br>37<br>38                                                            |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1                                                      | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Cc                                                     | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED<br>Study of Air Conditioning Systems                                                                                                                                                                                                                 | 30<br>Failure<br>36<br>37<br>38<br>38                                                      |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla                                      | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen                                   | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED<br>Study of Air Conditioning Systems<br>onditioning Study & performance Analysis<br>3 Replace Existing 3 Star ACs with Inverter Technology 5 Star ACs on<br>t Basis                                                                                  | 30<br>Failure<br>36<br>37<br>38<br>38<br>Failure<br>40                                     |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla<br>6.3                               | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen<br>Savin                          | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED<br>Study of Air Conditioning Systems<br>onditioning Study & performance Analysis<br>3 Replace Existing 3 Star ACs with Inverter Technology 5 Star ACs on<br>t Basis<br>g calculation of ECM#3 for Air CONDITIONING                                   | 30<br>Failure<br>36<br>37<br>38<br>38<br>Failure<br>40<br>41                               |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla<br>6.3<br>CHAPT                      | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen<br>Savin                          | ed Lighting Study & performance Analysis<br>2 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis<br>g Calculation ECM#2 Replace Existing old Conventional Lamps with LED<br>Study of Air Conditioning Systems<br>onditioning Study & performance Analysis<br>3 Replace Existing 3 Star ACs with Inverter Technology 5 Star ACs on<br>t Basis<br>g calculation of ECM#3 for Air CONDITIONING<br>Study of Water Pumping Systems | 30<br>Failure<br>36<br>37<br>38<br>Failure<br>40<br>41<br>42                               |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla<br>6.3<br>CHAPT<br>7.1               | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen<br>Savin<br>ER:7<br>Water         | ed Lighting Study & performance Analysis<br>22 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis                                                                                                                                                                                                                                                                                                                             | 30<br>Failure<br>36<br>37<br>38<br>Failure<br>40<br>41<br>42<br>42                         |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla<br>6.3<br>CHAPT<br>7.1<br>7.2        | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen<br>Savin<br>ER:7<br>Water<br>ECM# | ed Lighting Study & performance Analysis<br><sup>12</sup> Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis                                                                                                                                                                                                                                                                                                                  | 30<br>Failure<br>36<br>37<br>38<br>38<br>Failure<br>40<br>41<br>42<br>42<br>42             |
| 5.1<br>5.2<br>Repla<br>5.3<br>CHAPT<br>6.1<br>6.2<br>Repla<br>6.3<br>CHAPT<br>7.1<br>7.2<br>7.3 | Install<br>ECM#<br>acemen<br>Savin<br>ER:6<br>Air Co<br>ECM#<br>acemen<br>Savin<br>ER:7<br>Water<br>ECM# | ed Lighting Study & performance Analysis<br>22 Replace Existing old Conventional Lamps with LED Low wattage Lamps on<br>t Basis                                                                                                                                                                                                                                                                                                                             | 30<br>Failure<br>36<br>37<br>38<br>38<br>Failure<br>40<br>41<br>42<br>42<br>42<br>42<br>42 |

| 8.1   | Water Coolers                                    | 51 |
|-------|--------------------------------------------------|----|
| 8.2   | Water Dispensers                                 | 51 |
| СНАРТ | FER:9 Summary                                    | 52 |
| 9.1   | Cumulative Energy Saving Opportunities           | 52 |
| СНАРТ | rer:10 ANNEXURE                                  | 53 |
| 10.1  | Annexure-1: Agency Certificate                   | 53 |
| 10.2  | Annexure-2: Energy Efficient Equipment Suppliers | 54 |
| 10.3  | Annexure-3: Recommended Lux Levels               | 56 |
| 10.4  | Annexure-4: Energy Monitoring and Accounting     | 57 |
| 10.5  | Annexure-5: Checklist for Preventive Maintenance | 59 |

#### List of Table

| Table 1: Contact Details of the Organization and the Contact Persons  | 6  |
|-----------------------------------------------------------------------|----|
| Table 2: General Building Details & Energy Consumption                | 6  |
| Table 3: Details of Installed Solar Lighting in the Campus:           | 12 |
| Table 4:Electrical Connection and Energy Consumption Details          | 14 |
| Table 4:Energy consumption share from Grid and PV Panels              | 18 |
| Table 5: Details of existing Installed Fans in the campus             | 21 |
| Table 6: Energy and Cost Saving Calculation for ECM#1                 | 29 |
| Table 7 Existing Installed Lighting System Details                    | 30 |
| Table 8: Total nos of different lighting fixtures are tabulated below | 36 |
| Table 9: Energy and Cost Saving Calculation for ECM#2                 | 37 |
| Table 10: Air Conditioning installed at Institute                     | 38 |
| Table 11: Energy and Cost Saving Calculation for ECM#3                | 41 |
| Table 12: Lux Level Measured Values                                   | 44 |
| Table 13: Library Lux Level                                           | 49 |
| Table 14: Water Coolers                                               | 51 |
| Table 15:Water Dispenser                                              | 51 |

# **Executive Summary**

Energy Audit is the key to a systematic approach for decision-making in the area of energy management as it attempts to evaluate the energy usage pattern in an establishment. Also, it serves to identify all the energy streams in an establishment, so that potential areas wherein energy savings are practically feasible are identified.

It was with this objective that Innovative Energy Conservation Solutions (IECS) was entrusted by Government Home Science College, Chandigarh, the energy audit of the Institute.

The study primarily covers the I) Present energy scenario of the building, ii) Detailed analysis of the data obtained through field visits, trial measurements by portable gadgets, discussions with concerned personnel etc., iii) Recommendations for energy savings options in all possible areas with cost benefit analysis.

| Sr.<br>No. | Particulars                                                                            | Value                                                                            |
|------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1          | Connected Load (kW)                                                                    | 194 kW                                                                           |
| 2          | Installed Solar Capacity                                                               | 190 kWp<br>Tentative Units Generation<br>(190 x 1500 kWh)<br>285000 kWh (Annual) |
| 3          | Electricity Consumption, purchased from Utilities / Grid<br>(kWh) – Jan 2022- Nov 2022 | 151473 kWh- Import<br>58128 kWh- Export                                          |
| 4          | Electricity Consumption, through Solar (kWh) - Jan 2022-<br>Nov 2022                   | 175281 kWh- institute<br>Consumption<br>(Calculated Approx.)                     |
| 5          | Annual Cost of Electricity, purchased from Utilities/ Grid<br>(Rs.) -                  | Rs 3.46/kWh                                                                      |
| 6          | Working hours                                                                          | General Lighting (7 hrs./day,<br>245 days a year)                                |

#### **General Building Details & Energy Consumption**

| Sr.<br>No. | Particulars                                              | Value                                             |
|------------|----------------------------------------------------------|---------------------------------------------------|
|            |                                                          | Air Conditioning (7 hrs./day,<br>150 days a year) |
|            |                                                          | Fans (7 hrs./day, 210 days a<br>year)             |
| 7          | Working days/week (e.g., 5/6/7 days per week)            | 06 days per week                                  |
| 8          | Installed capacity of Air Conditioning System (TR)       | Total no of AC Installed =57                      |
| 9          | Installed lighting load including Lights (kW) Total 3078 | 110. 808 kW                                       |
| 10         | Installed load of Fans (kW)                              | 59.92 kW                                          |
| 11         | Installed Load of Air conditioners                       | 108.15 kW                                         |
| 12         | Exhaust Fan Total – 35                                   | 19.25 kW                                          |
| 13         | Street Light Total – 70                                  | 8.4 kW                                            |
| 14         | Water Coolers                                            | 4.65 kW                                           |
| 15         | Water Dispensers                                         | 2.5 kW                                            |
| 16         | Computer Total – 235                                     | 47 kW                                             |

#### Total Energy Consumed in MTOE per annum

#### Period Jan-2022 to Nov- 2022

| Source of Energy                    | Consumption<br>kWh/annum | <b>Calorific Value</b><br>kCal/ kWh | Equivalent<br>kCal | Equivalent<br>MTOE |
|-------------------------------------|--------------------------|-------------------------------------|--------------------|--------------------|
| Total Purchased Power               | 151473                   | 860                                 | 130266780          | 13.02              |
| Total Power Generated through solar | 175281                   | 860                                 | 150741660          | 15.07              |
|                                     | Total                    |                                     |                    | 28.09              |

#### **Cumulative Energy Saving Opportunities**

| Particulars                                                                                              | Annual Savings |      |      |               | Estimated<br>Investment |
|----------------------------------------------------------------------------------------------------------|----------------|------|------|---------------|-------------------------|
|                                                                                                          | kWh            | ТоЕ  | tCO2 | Rs in<br>Lakh | (Rs in Lakh)            |
| Replace Existing Ceiling Fans with<br>low wattage Ceiling Fans on<br>Failure Replacement Basis           | 57253          | 4.92 | 46.9 | 1.98          | 18.75                   |
| Replace Existing old Conventional<br>Lamps with LED Low wattage<br>Lamps on Failure Replacement<br>Basis | 11276          | 0.97 | 9.2  | 0.39          | 0.58                    |
| Replace Existing 3 Star ACs with<br>Inverter Technology 5 Star ACs on<br>Failure Replacement Basis       | 32445          | 2.79 | 26.6 | 1.12          | 22.8                    |
| Replace the Existing Raw Pumps with new Energy Efficient Pumps                                           | 5120           | 0.44 | 4.2  | 0.18          | 0.25                    |
| Total                                                                                                    | 106094         | 9.12 | 86.9 | 3.67          | 42.38                   |

Except Pumps replacement project all other projects are to be implemented on phase manner and on failure replacement basis. Otherwise, payback period will be high

### CHAPTER:1 INTRODUCTION

#### 1.1 THE PROJECT

According to energy Conservation Act, 2001, Energy Audit is the verification, monitoring, and analysis of the use of energy including submission of a technical report containing recommendations for improving energy efficiency with cost-benefit analysis and an action plan to reduce energy consumption.

Energy Audit is the key to a systematic approach for decision-making in the area of energy management as it attempts to evaluate the energy usage pattern in an establishment. Also, it serves to identify all the energy streams in an establishment, so that potential areas wherein energy savings are practically feasible are identified.

It was with this objective that Innovative Energy Conservation Solutions (IECS) was entrusted by Government Home Science College, Chandigarh, the energy audit of the Institute.

| Particulars                                                           |   | Details                                                                                                                  |
|-----------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------|
| Name & Address of Institute                                           | : | Government Home Science College,<br>Chandigarh,                                                                          |
| Contact                                                               | : | Mrs Mona Soin (Nodal Officer)<br>Mob: 9464121752                                                                         |
| Annual Purchased Power<br>Consumption<br>(Period: Jan 2022- Nov 2022) | : | 151473 kWh- Import Consumption<br>226872 kWh- Institute Consumption<br>(Calculated Approx.)<br>58128 kWh- Export to Grid |
| Basic Purchased Power Rate                                            | : | Units Consumption Unit rate in<br>Rs/kWh<br>0-150 kWh per month 2.50                                                     |

#### **1.2 GENERAL DETAILS**

| Particulars                                                                 |   | Details                                                       |
|-----------------------------------------------------------------------------|---|---------------------------------------------------------------|
|                                                                             |   | 151-400 kWh per month 4.25<br>Above 400 kWh per 4.65<br>month |
| Overall Purchased Power Rate<br>including Fixed Demand and other<br>Charges | : | Rs 3.46 per kWh<br>(averaged out for the assessment period)   |

#### 1.3 DELIVERABLES IN THE DETAIL PROJECT REPORT

- Methodology adopted for the study
- Present energy scenario of the building
- Detailed analysis of the data obtained through field visits, trial measurements by portable gadgets, discussions with concerned personnel etc.
- Recommendations for energy savings options in all possible areas with cost benefit analysis.
- Technical specifications for any retrofit options

#### 1.4 METHODOLOGY

Methodology adopted for achieving the desired objectives viz: Assessment of the Current operational status and Energy savings include the following:

- Discussions with the concerned officials for identification of major areas of focus and other related systems.
- A team of engineers visited the Institute premises and had discussions with the concerned officials/ supervisors to collect data/ information on the operations and energy distribution in the building. The data was analyzed to arrive at а base line energy consumption pattern.
- Measurements and monitoring with the help of appropriate instruments including continuous and/ or time-lapse recording, as appropriate and visual observations were made to identify the energy usage pattern and losses in the system.
- Computation and in-depth analysis of the collected data, including utilization of computerized analysis and other techniques as appropriate were done to draw inferences and to evolve suitable energy conservation plan/s for improvements/ reduction in specific energy consumption.
- Feedback Final Report Submission
- Draft Report submission on the findings of the audit.
- Final report submission after incorporating the observations/ comments made by the Institute.



# **CHAPTER:2 ABOUT THE COLLEGE**

Government Home Science College is recognized as one of the premier institutions of higher learning and research in the country. Since its inception in 1961, the college is committed to the sustenance and promotion of an environment, favorable to the growth and development of an academic excellence, satisfying contemporary women's professional and specialized needs. Aligning with the objectives of the various developmental schemes initiated by the Government of India such as "Skill India", "Atmanirbhar Bharat" 'Indian Skill Development Service' (ISDS) as well as 'Pradhan Mantri Kaushal Vikas Yojana (PMKVY) to nurture the academic institutes as incubation centers for the professional training of the students, the vision and mission of the college is to equip the students with market-relevant skill training. The rationale is to bridge the gap between skills required by the industry and the skills students acquire during their academic training in the institute.

Over the years, the college has built up great credibility and gained recognition as a premier institute. National Institution Ranking Framework (NIRF) has evaluated the college on the basis of Teaching Learning and Resources (TLR), Research and Professional Practice (RP), Graduation Outcome (GO), Outreach and Inclusivity (OI), and Perception. The College topped amongst city colleges in NIRF Ranking fourth time in a row at the National Level. It has been successful in attaining its position in the top 100 institutes of India consecutively for the last three years. This year, the college took a massive jump and figured among the top 50 institutes of India. It has significantly improved its ranking from 78th in 2021 to 46th spot in 2022 in India Rankings 2022 by NIRF, MoE, Government of India 2022.

| Degrees       | Courses                                   |
|---------------|-------------------------------------------|
|               | Home Science (Clothing & Textiles)        |
|               | Home Science (Foods & Nutrition)          |
| R Sc          | Home Science (Family Resource Management) |
| D.3C.         | Home Science (Composite)                  |
|               | Home Science (Human Development)          |
|               | Fashion Designing (Self Finance Course)   |
|               | Clothing & Textiles                       |
| M.Sc.         | Foods & Nutrition                         |
|               | Human Development                         |
|               | Nutrition & Dietetics                     |
| PG<br>Diploma | Fashion Designing                         |
| Bipionia      | Child Guidence & Family Counselling       |

#### **COURSES OFFERED**:

#### Google Map – Satellite View of Campus



#### **Reporting Requirement**

Table 1: Contact Details of the Organization and the Contact Persons

| Organization                |                                                                |  |
|-----------------------------|----------------------------------------------------------------|--|
| Name of the<br>Organization | Government Home Science College, Chandigarh,                   |  |
| Postal Address              | Sector 10-D, Chandigarh. Pincode-160011                        |  |
| Name                        | Designation                                                    |  |
| Mrs. Ranjana Sharma         | Associate Professor, In charge Environment<br>Committee-Harita |  |
| Mrs. Mona Soin              | Assistant Professor, Member, Harita                            |  |
| Mrs. Annu Deharwal          | Assistant Professor, Member, Harita                            |  |
| Mrs. Pratibha Thapa         | Assistant Professor, Member, Harita                            |  |
| Dr Shikha Garg              | Assistant Professor, Member, Harita                            |  |
| Dr Reenu                    | Assistant Professor, Member, Harita                            |  |
| Ms Akshata Verma            | Assistant Professor, Member, Harita                            |  |
| Mrs. Raman Bhalla           | Superintendent                                                 |  |
| Mrs. Gurjinder Kaur         | Care Taker                                                     |  |

#### Table 2: General Building Details & Energy Consumption

| SR.<br>No. | Item                     | Value                      |
|------------|--------------------------|----------------------------|
| 1          | Connected Load (kW)      | 194 kW                     |
| 2          | Installed Solar Capacity | 190 kWp                    |
|            |                          | Tentative Units Generation |
|            |                          | (190 x 1500 kWh)           |
|            |                          | 285000 kWh (Annual)        |

| SR.<br>No. | ltem                                                                                   | Value                                                         |
|------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 3          | Electricity Consumption, purchased from Utilities / Grid<br>(kWh) – Jan 2022- Nov 2022 | 151473 kWh- Import<br>58128 kWh- Export                       |
| 4          | Electricity Consumption, through Solar (kWh) - Jan 2022-<br>Nov 2022                   | 175281 kWh- institute<br>Consumption<br>(Approx. Calculation) |
| 5          | Annual Cost of Electricity, purchased from Utilities/ Grid<br>(Rs.) -                  | Rs 3.46/kWh                                                   |
| 6          | Working hours                                                                          | General Lighting (7 hrs./day,<br>245 days a year)             |
|            |                                                                                        | Air Conditioning (7 hrs./day,<br>150 days a year)             |
|            |                                                                                        | Fans (7 hrs./day, 210 days a<br>year)                         |
| 7          | Working days/week (e.g., 5/6/7 days per week)                                          | 06 days per week                                              |
| 8          | Installed capacity of Air Conditioning System (TR)                                     | Total no of AC Installed =57                                  |
| 9          | Installed lighting load including Lights (kW) Total 3078                               | 110. 808 kW                                                   |
| 10         | Installed load of Fans (kW)                                                            | 59.92 kW                                                      |
| 11         | Installed Load of Air conditioners                                                     | 108.15 kW                                                     |
| 12         | Exhaust Fan Total – 35                                                                 | 19.25 kW                                                      |
| 13         | Street Light Total – 70                                                                | 8.4 kW                                                        |
| 14         | Water Coolers                                                                          | 4.65 kW                                                       |
| 15         | Water Dispensers                                                                       | 2.5 kW                                                        |
| 16         | Computer Total - 235                                                                   | 47 kW                                                         |

#### 2.1 ENERGY CONSERVATION ACTIVITY TAKEN BY THE COLLEGE

We appreciate the College for their steps taken to reduce the energy consumption in proactive manner. In the last year there were many energies conservation point taken by the College.

- With support from CREST, college has installed grid-connected rooftop solar photovoltaic power plant of capacity 190 kWp on various buildings in the college since past 6 years.
  - 90 kWp rooftop SPV plant on the Academic building
  - o 50 kWp rooftop SPV plant on B.Sc. hostel building (both old wing and new wing)
  - o 30 kWp rooftop SPV plant on M.Sc. hostel building
  - o 20 kWp rooftop SPV plant on Multimedia Research Block building









The water geysers, lights and fans in both the hostel buildings run fully on solar power generated by the SPV plant on campus. With support from Department of Science and Technology and Renewable Energy, Chandigarh Administration, college installed 13 solar lights in the college campus.



| Table 3: Details of Installed Solar | <sup>.</sup> Lighting in | the Campus: |
|-------------------------------------|--------------------------|-------------|
|-------------------------------------|--------------------------|-------------|

| S. No. | Area                                   | No. of solar lights |
|--------|----------------------------------------|---------------------|
| 1      | Car Parking Area                       | 01                  |
| 2      | B.Sc. hostel – in the park             | 03                  |
| 3      | B.Sc. hostel parking area              | 01                  |
| 4      | Principal's lodge- front and back      | 02                  |
| 5      | M.Sc. hostel – in the park             | 02                  |
| 6      | College main gate                      | 01                  |
| 7      | Near college gate 2 – along roadside   | 01                  |
| 8      | Outside Principal office – in the park | 01                  |
| 9      | Sports ground – near office building   | 01                  |
|        | TOTAL                                  | 13                  |

> College also took an initiative to replace old tube lights with energy efficient LED lights in:

- Academic building, B.Sc. Hostel (both wings) and M.Sc. Hostel building, Auditorium, Chaitanya Laboratory Nursery School, Multimedia Research Block and Principal's residence.
- It also replaced existing solar lights in campus area with 40-watt solar LED light fitting in the college.
- Replaced existing 2x40 watt street light fitting with 45-watt LED fitting and 125 watt/HPMV fitting in campus area.

- Energy efficient re-wiring was also done throughout the campus to increase energy efficiency of its systems, reduce energy loss and improved safety of the building occupants and residents on campus.
- > The college also has a facility of electric bike for internal commutation.
- Environment committee- Harita, conducted regular energy efficiency awareness programs like inter-college competitions for sensitizing staff and students on energy efficiency, renewable energy, energy monitoring, waste segregation and disposal, water conservation etc.
- An 'Energy Saving Brigade' comprising of students from different classes is constituted in the college in every session that works towards:
  - Spreading awareness about efficient resource conservation and utilization by the use of posters, conducting Nukkad Natak, required signage's, etc. wherever and whenever required.
  - Ensuring that the lights, fans, computers and other systems on campus are turned off, unplugged or kept in power saving mode when they are not in use.

We congratulations institute management to take the upfront step for installing solar PV- System to protect the environment, reduced the greenhouse gases emission, improve sustainability.

# CHAPTER:3 POWER SUPPLY SYSTEM AND ENERGY CONSUMPTION Pattern

#### 3.1 POWER SUPPLY SYSTEM

The Power Supply to the building is sourced from the Chandigarh Electricity Department at 0.433 kV under DS (domestic supply) category. Billing is done on kWh basis. There Were 8 nos of electrical Connections were present. Details and Power consumption is tabulated below

Table 4: Electrical Connection and Energy Consumption Details

| Date in        | Date Out   | no. of days | Connected<br>Load in kW | Energy<br>Consumpti<br>on in kWh | Energy<br>Charges in<br>Rs | Fixed<br>Charges in<br>Rs | Total<br>Amount<br>Paid in Rs | Amount<br>Payable in<br>Rs | Solar units<br>Export in<br>kWh |
|----------------|------------|-------------|-------------------------|----------------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|---------------------------------|
|                |            |             |                         | 1021043                          | 70173RE                    |                           |                               |                            |                                 |
| 03-01-2022     | 03-03-2022 | 59          | 10.73                   | 1658                             | 6865                       | 220                       | 7990                          | 0                          | 0                               |
| 03-03-2022     | 03-05-2022 | 61          | 10.73                   | 4448                             | 19838                      | 220                       | 21092                         | 0                          | 0                               |
| 03-05-2022     | 03-07-2022 | 61          | 10.73                   | 3716                             | 16438                      | 226                       | 17098                         | 0                          | 0                               |
| 03-07-2022     | 03-09-2022 | 62          | 10.73                   | 3806                             | 16928                      | 330                       | 18116                         | 0                          | 0                               |
| 03-09-2022     | 03-11-2022 | 61          | 10.73                   | 2738                             | 11962                      | 330                       | 12967                         | 0                          | 0                               |
| Total          |            | 304         | 10.73                   | 16366                            | 72031                      | 1326                      | 77263                         |                            |                                 |
| 102104370289RR |            |             |                         |                                  |                            |                           |                               |                            |                                 |
| 03-01-2022     | 03-03-2022 | 59          | 0.2                     | 310                              | 793                        | 20                        | 0                             | -10053                     | 0                               |

| Date in    | Date Out   | no. of days | Connected<br>Load in kW | Energy<br>Consumpti<br>on in kWh | Energy<br>Charges in<br>Rs | Fixed<br>Charges in<br>Rs | Total<br>Amount<br>Paid in Rs | Amount<br>Payable in<br>Rs | Solar units<br>Export in<br>kWh |
|------------|------------|-------------|-------------------------|----------------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|---------------------------------|
| 03-03-2022 | 03-05-2022 | 61          | 0.2                     | 89                               | 223                        | 20                        | 0                             | -10128                     | 0                               |
| 03-05-2022 | 03-07-2022 | 61          | 0.2                     | 81                               | 204                        | 21                        | 0                             | -9897                      | 0                               |
| 03-07-2022 | 03-09-2022 | 62          | 0.2                     | 126                              | 347                        | 30                        | 0                             | -9454                      | 0                               |
| 03-09-2022 | 03-11-2022 | 61          | 0.2                     | 57                               | 157                        | 30                        | 0                             | -9215                      | 0                               |
| Total      |            | 304         | 0.2                     | 663                              | 1724                       | 121                       | 0                             |                            |                                 |
|            |            |             |                         | 1021043                          | 70114SY                    |                           |                               |                            |                                 |
| 03-01-2022 | 03-07-2022 | 181         | 8.62                    | 944                              | 2441                       | 185                       | 2626                          | -32931                     | 0                               |
| 03-07-2022 | 03-09-2022 | 62          | 8.62                    | 202                              | 556                        | 270                       | 0                             | -31963                     | 0                               |
| 03-09-2022 | 03-11-2022 |             |                         |                                  |                            |                           |                               |                            |                                 |
| Total      |            | 243         | 8.62                    | 1146                             | 2997                       | 455                       | 2626                          |                            |                                 |
|            |            |             |                         | 1021043                          | 70072RT                    |                           |                               |                            |                                 |
| 30-01-2022 | 30-03-2022 | 59          | 91.2                    | 12414                            | 53658                      | 1055                      | 57960                         | 0                          | 693                             |
| 30-03-2022 | 30-05-2022 | 61          | 91.2                    | 13475                            | 61214                      | 1840                      | 44539                         | 0                          | 129                             |
| 30-05-2022 | 30-07-2022 | 61          | 91.2                    | 12728                            | 49714                      | 2300                      | 51149                         | 0                          | 1863                            |
| 30-07-2022 | 30-09-2022 | 62          | 91.2                    | 10575                            | 40415                      | 2760                      | 45035                         | 0                          | 1718                            |
| 30-09-2022 | 30-11-2022 |             | 91.2                    |                                  |                            |                           |                               |                            |                                 |

| Date in            | Date Out   | no. of days | Connected<br>Load in kW | Energy<br>Consumpti<br>on in kWh | Energy<br>Charges in<br>Rs | Fixed<br>Charges in<br>Rs | Total<br>Amount<br>Paid in Rs | Amount<br>Payable in<br>Rs | Solar units<br>Export in<br>kWh |
|--------------------|------------|-------------|-------------------------|----------------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|---------------------------------|
| Total              |            | 243         | 91.2                    | 49192                            | 205001                     | 7955                      | 198683                        |                            |                                 |
|                    |            |             |                         | 1021043                          | 70073SX                    |                           |                               |                            |                                 |
| 30-01-2022         | 30-03-2022 | 59          | 44.43                   | 269                              | 0                          | 0                         | 0                             | -103486                    | 142                             |
| 30-03-2022         | 30-05-2022 | 61          | 44.43                   | 241                              | 603                        | 900                       | 0                             | -103699                    | 0                               |
| 30-05-2022         | 30-07-2022 | 61          | 44.43                   | 1002                             | 0                          | 1125                      | 0                             | -102741                    | 28052                           |
| 30-07-2022         | 30-09-2022 | 62          | 44.43                   | 919                              | 0                          | 1350                      | 0                             | -101391                    | 4158                            |
| 30-09-2022         | 30-11-2022 | 61          | 44.43                   | 1571                             | 0                          | 1350                      | 0                             | 100041                     | 2672                            |
| Total              |            | 304         | 44.43                   | 4002                             | 603                        | 4725                      | 0                             |                            |                                 |
| 102104370<br>291RR |            |             |                         |                                  |                            |                           |                               |                            |                                 |
| 30-01-2022         | 30-03-2022 | 59          | 10.42                   | 4315                             | 2072                       | 220                       | 0                             | -40303                     | 2556                            |
| 30-03-2022         | 30-05-2022 | 61          | 10.42                   | 4820                             | 10138                      | 220                       | 0                             | -36366                     | 2458                            |
| 30-05-2022         | 30-07-2022 | 61          | 10.42                   | 6961                             | 17508                      | 275                       | 0                             | -18058                     | 3022                            |
| 30-07-2022         | 30-09-2022 | 62          | 10.42                   | 4644                             | 4201                       | 330                       | 0                             | -13303                     | 3575                            |
| 30-09-2022         | 30-11-2022 | 61          | 10.42                   | 4995                             | 12087                      | 330                       | 0                             | -838                       | 2230                            |
| Total              |            | 304         | 10.42                   | 25735                            | 46006                      | 1375                      | 0                             |                            |                                 |

| Date in            | Date Out   | no. of days | Connected<br>Load in kW | Energy<br>Consumpti<br>on in kWh | Energy<br>Charges in<br>Rs | Fixed<br>Charges in<br>Rs | Total<br>Amount<br>Paid in Rs | Amount<br>Payable in<br>Rs | Solar units<br>Export in<br>kWh |
|--------------------|------------|-------------|-------------------------|----------------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|---------------------------------|
| 102104370<br>292RU |            |             |                         |                                  |                            |                           |                               |                            |                                 |
| 30-01-2022         | 30-03-2022 | 59          | 32.26                   | 5814                             | 26190                      | 660                       | 28071                         | 0                          | 0                               |
| 30-03-2022         | 30-05-2022 | 61          | 10.42                   | 8568                             | 38996                      | 660                       | 50544                         | 0                          | 0                               |
| 30-05-2022         | 30-07-2022 | 61          | 10.42                   | 12535                            | 57308                      | 825                       | 60583                         | 0                          | 37                              |
| 30-07-2022         | 30-09-2022 | 62          | 10.42                   | 6669                             | 17174                      | 990                       | 18974                         | 0                          | 2810                            |
| 30-09-2022         | 30-11-2022 | 61          | 10.42                   | 6212                             | 18755                      | 990                       | 19807                         | 0                          | 2013                            |
| Total              |            | 304         | 14.788                  | 39798                            | 158423                     | 4125                      | 177979                        | 0                          |                                 |
| 102104370<br>073RW |            |             |                         |                                  |                            |                           |                               |                            |                                 |
| 03-03-2022         | AVERAGE    | 61          | 13.64                   | 14571                            | 66914                      | 287                       | 67858                         | 0                          | 0                               |
| 01-05-2022         | 03-09-2022 | 125         | 13.64                   | 0                                | 0                          | 420                       | 352                           | 0                          | 0                               |
| 03-09-2022         | 03-11-2022 | 61          | 13.64                   | 0                                | 0                          | 420                       | 352                           | 0                          | 0                               |
|                    |            | 247         | 13.64                   | 14571                            | 66914                      | 707                       | 68210                         | 0                          | 0                               |
|                    |            |             | 194                     | 151473                           | 130266780                  |                           | 524761                        | -533785                    | 58128                           |

From Electricity Bills analysis, we can summaries that the solar power plant generated electricity which is used in college with surplus export to grid. Thus, college have negative electricity bill.

#### Total Energy Consumption Share from Grid and Solar PV is tabulated below

Table 5: Energy consumption share from Grid and PV Panels

| Energy Share           |               |            |  |  |  |
|------------------------|---------------|------------|--|--|--|
| Particulars            | Values in kWh | Percentage |  |  |  |
| Electricity from Grid  | 151473        | 46%        |  |  |  |
| Electricity from Solar | 175281        | 54%        |  |  |  |
| Total                  | 326754        | 100%       |  |  |  |

The graph showing the share of energy consumption from grid and solar PV. As we can see from following graph that major contributor for meeting the requirement of collage is solar PV which is nearly 54 %.



#### **Total Energy generation & consumption pattern**

| Particulars                                         | Values in kWh |
|-----------------------------------------------------|---------------|
| Total Energy Purchased from Grid in kWh             | 151473        |
| Total Energy Consumption from Solar PV plant in kWh | 175281        |
| Total Solar Energy Export to Grid in kWh            | -58128        |



As from the above table & figure it can be seen that collage is exporting energy in the grid and majorly solar generated energy being used. Thus, collage is self sufficient and independent in terms of energy requirement.

#### Period Jan-2022 to Nov- 2022

#### **Connected Load Distribution and Mapping**

| Electrical Load       | Connected Values in<br>kW |
|-----------------------|---------------------------|
| Lighting Load         | 110                       |
| Celling Fans Load     | 59                        |
| Air Conditioners Load | 108                       |
| Exhaust Fan Load      | 19                        |
| Street Light Load     | 8.5                       |
| Coolers               | 4.64                      |
| Dispensers            | 2.5                       |
| Computers Load        | 47                        |
| Other Miscellaneous   | 35                        |



As from the above table and graph it can be seen that major energy consumer in the collage is lighting followed by air conditioner, and then ceiling fans. These 3 contributes for 70 % of the total consumption.

### CHAPTER:4 STUDY OF CEILING FANS SYSTEMS

#### 4.1 CELLING FANS DETAILS

The College have around 749 no. of ceiling fans with the wattage of 80. These fans were very old or some of them was not working. These fans can be replaced with new technology ceiling fans.

It is suggested to install new technology ceiling fans in the place of existing fans. The rating of these fan will be 28 watts. Thus, it will reduce the power Consumption.

| Sr No | Room No | Particular                                  | No. of Ceiling Fan<br>installed |
|-------|---------|---------------------------------------------|---------------------------------|
| 1     | 1       | Principal Room                              | 4                               |
| 2     | 2       | Steno Room                                  | 1                               |
| 3     | 3       | Committee Room                              | 6                               |
| 4     | 3-A     | First Aid Room                              | 1                               |
| 5     | 4       | Administrative Office                       | 12                              |
| 6     | 5       | Electric Substation                         | 0                               |
| 7     | 6       | Smart Lecture Room-1                        | 7                               |
| 8     | 7       | Staff Room                                  | 1                               |
| 9     | 8       | Smart Class Room                            | 5                               |
| 10    | 9       | Class Room                                  | 4                               |
| 11    | 10      | e- Pathshala                                | 6                               |
| 12    | 11      | Smart Class Room                            | 2                               |
| 13    | 12      | Food Science Lab/Nutritional assessment Lab | 2                               |

Table 6: Details of existing Installed Fans in the campus

| Sr No | Room No | Particular                                          | No. of Ceiling Fan<br>installed |
|-------|---------|-----------------------------------------------------|---------------------------------|
| 14    | 13      | Cafeteria/ Institutional food<br>administration lab | 8                               |
| 15    | 14      | Microbiology Lab                                    | 15                              |
| 16    | 15      | Seminar Room                                        | 1                               |
| 17    | 16      | Store                                               | 0                               |
| 18    | 17      | Basement Hall No - 1                                | 2                               |
| 19    | 18      | Basement Hall No-2                                  | 10                              |
| 20    | 19      | Basement Hall No-3                                  | 10                              |
| 21    | 20      | Store                                               | 1                               |
| 22    | 21      | Store                                               | 0                               |
| 23    | 22      | MSc Food Lab                                        | 13                              |
| 24    | 23      | Store                                               | 1                               |
| 25    | 24      | B.Sc. Food Lab                                      | 12                              |
| 26    | 25      | Lab Staff Room                                      | 2                               |
| 27    | 26      | Teaching Staff Room                                 | 2                               |
| 28    | 27      | Bio Chemistry lab                                   | 8                               |
| 29    | 28      | Diet Clinic/Staff room                              | 2                               |
| 30    | 29      | Computer Lab                                        | 6                               |
| 31    | 30      | IQAC Room                                           | 3                               |
| 32    | 31      | Visitors Room                                       | 1                               |
| 33    | 32      | Library- Main Hall                                  | 31                              |

| Sr No | Room No | Particular                                          | No. of Ceiling Fan<br>installed |
|-------|---------|-----------------------------------------------------|---------------------------------|
| 34    | 32-A    | Newspaper, Periodical & Magazine<br>Section Library | 4                               |
| 35    | 32-В    | Reference Section                                   | 7                               |
| 36    | 33      | Conference Hall                                     | 1                               |
| 37    | 34      | NCC Cell                                            | 1                               |
| 38    | 35      | Smart Lecture Room-II                               | 9                               |
| 39    | 36      | CAD Lab                                             | 3                               |
| 40    | 37      | Dyeing Lab                                          | 4                               |
| 41    | 37-A    | Printing Lab                                        | 6                               |
| 42    | 38      | Pattern Making Lab                                  | 6                               |
| 43    | 39      | Textile Testing Lab                                 | 5                               |
| 44    | 39-A    | Staff Room                                          | 1                               |
| 45    | 40      | Heritage Resource Centre                            | 4                               |
| 46    | 40-A    | Weaving & Knitting Lab                              | 2                               |
| 47    | 41      | PG Garment Construction Lab - I                     | 5                               |
| 48    | 42      | PG Garment Construction Lab - II                    | 7                               |
| 49    | 43      | Department Library                                  | 1                               |
| 50    | 44      | Seminar Hall                                        | 3                               |
| 51    | 45      | Staff Room                                          | 2                               |
| 52    | 46      | UG Garment Construction lab-I                       | 12                              |
| 53    | 47      | Store Room                                          | 1                               |

| Sr No | Room No | Particular                                | No. of Ceiling Fan<br>installed |
|-------|---------|-------------------------------------------|---------------------------------|
| 54    | 48      | Smart Class Room                          | 2                               |
| 55    | 49      | Physics Lab                               | 12                              |
| 56    | 50      | Nodal officer                             | 1                               |
| 57    | 51      | Control Room                              | 1                               |
| 58    | 52      | Chemistry Lab.                            | 12                              |
| 59    | 53      | Staff Room                                | 1                               |
| 60    | 54      | Home Management & Furnishing Lab<br>House | 6                               |
| 61    | 54-A    | Auto CAD Lab                              | 2                               |
| 62    | 54-B    | Ergonomics Lab                            | 2                               |
| 63    | 54-C    | FRM Staff Room                            | 2                               |
| 64    | 55      | Family Resource Lab                       | 12                              |
| 65    | 55-A    | Equipment Lab                             | 2                               |
| 66    | 55-B    | Design Studio                             | 4                               |
| 67    | 56      | Smart Lecture Theatre                     | 7                               |
| 68    | 57      | NSS Room                                  | 1                               |
| 69    | 58      | Smart Class Room                          | 5                               |
| 70    | 59 -I   | Smart Class Room                          | 8                               |
| 71    | 59-11   | Smart Class/ HD Lab-III                   | 9                               |
| 72    | 60      | Counselling Cell                          | 11                              |
| 73    | 61      | Staff Room                                | 1                               |
| 74    | 62      | Smart Class                               | 5                               |

| Sr No | Room No | Particular                       | No. of Ceiling Fan<br>installed |
|-------|---------|----------------------------------|---------------------------------|
| 75    | 63 -A   | HD Lab-I                         | 6                               |
| 76    | 63-B    | HD Lab-II                        | 8                               |
| 77    | 64      | HD Department HOD Office         | 1                               |
| 78    | 65      | HD Lab Staff Room                | 1                               |
| 79    | 66      | Botany Lab                       | 15                              |
| 80    | 67      | Staff Room                       | 1                               |
| 81    | 68      | HOD Botany Office                | 1                               |
| 82    | 69      | Zoology Lab                      | 15                              |
| 83    | 70      | Staff Room                       | 1                               |
| 84    | 71      | HOD Zoology office               | 1                               |
| 85    | 72      | Faculty Room                     | 1                               |
| 86    | 73      | Art Lab                          | 14                              |
| 87    | 74      | Staff Room                       | 2                               |
| 88    | 75      | Art Lab Store                    | 1                               |
| 89    | -       | Multimedia Research Block        | 12                              |
| 90    | -       | Academic Hall Lobby Ground Floor | 12                              |
| 91    | -       | Academic Hall Lobby First Floor  | 4                               |
| 92    | -       | Academic Hall Lobby Second Floor | 9                               |
| 93    | -       | BSC Hostel Mess Hall (OLD Wing)  | 16                              |

| Sr No | Room No | Particular                                 | No. of Ceiling Fan<br>installed |
|-------|---------|--------------------------------------------|---------------------------------|
| 94    | -       | BSC Hostel Mess Cooking Area (Old<br>Wing) | 6                               |
| 95    | -       | BSC Hostel Common Room (Old<br>Wing)       | 12                              |
| 96    | -       | BSC Hostel Room & Others (Old<br>Wing)     | 100                             |
| 97    | -       | BSC Hostel Room & Others (New<br>Wing)     | 100                             |
| 98    | -       | M.Sc. Hostel Ground Floor                  | 7                               |
| 99    | -       | M.Sc. Hostel Rooms & Others                | 66                              |
| 100   | -       | Auditorium                                 | 15                              |
| 101   |         | Leisure Lounge                             | 0                               |
| 102   |         | Chatanya Nursery lab.                      | 26                              |
| 103   |         | Indoor Badminton Hall                      | 6                               |
| 104   |         | Music Room                                 | 1                               |
| 105   |         | Physical Education Room                    | 3                               |
| 106   |         | Canteen                                    | 12                              |
| 107   |         | Administrative Office                      | 0                               |
| 108   |         | Basement                                   | 0                               |

#### 4.2 ECM#1 REPLACE EXISTING CEILING FANS WITH LOW WATTAGE CEILING FANS ON FAILURE REPLACEMENT BASIS

With technological advancements, new energy efficient BLDC fans consumed much less power for the same air flow, besides offering allied benefits like lesser noise and enhanced life,

#### New Technology Energy Efficient BLDC Fans

A brushless DC (BLDC) motor is a synchronous electric Motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than mechanical commutator and brushes. In BLDC motors, current to torque and voltage to rpm are linear relationships. This linearity provides an excellent opportunity to use the BLDC motor in the conventional ceiling fans.



This paper presents practical implementation

of such BLDC motor for ceiling fan application along with the actual power measurements in comparison with conventional ceiling fans. Complete electronics and the associated advantages and disadvantages of this BLDC ceiling fans are also presented.

#### Why BLDC Fans?

Today the typical ceiling fan is based on AC motors which are more power consuming. Along with this the typical AC motorbased fans have the rpm control through the capacitor or resistorbased regulators and is not efficient as there is loss in the regulator itself to some extent. In addition, the RPM control is by controlling the voltage and the



voltage fluctuations of the mains make it very challenging to have constant RPM based on the AC mains supply. Further, existing AC motor solution, results in power factor (PF) degradation

with no improvement for PF and there are other side effects like harmonics injection to the AC mains, etc.

The total amount of air flow or displacement is based on the blade size & rpm and does not change due to any other factor. The proposed solution is to keep the same air flow or displacement with less of energy usage along with improving the PF using the BLDC motor-based ceiling fans. Typical BLDC motor-based ceiling fan has much better efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operates out of 24V DC through an SMPS (switched mode power supply) having input AC which can vary from 90V to 270V. Following graph shows the comparison between BLDC and conventional ceiling fans

The power consumption is less than half at full speed and is about 20% at low speed for the BLDC motor compared to the conventional motor-based ceiling fan, as can be seen from the graph above. The Power Supply (PS) used is at 85% efficiency and the electronics circuit consumes less than 0.5 Watt. Generally, 210-220 RPM conventional fans are used which consumes almost 50-Watt power. From graph, as can be seen that same RPM BLDC motor consumes almost half power.

|                              | Gorilla 900 mm | Gorilla 1050 mm | Gorilla 1200 mm | Gorilla 1400 mm | Gorilla Premium<br>Earth brown | Gorilla Premium<br>Sand Grey |
|------------------------------|----------------|-----------------|-----------------|-----------------|--------------------------------|------------------------------|
| Power Consumption<br>(Watts) | 28             | 32              | 28              | 35              | 28                             | 28                           |
| Air Delivery (CMM)           | 175            | 210             | 220             | 270             | 220                            | 220                          |
| RPM                          | 450            | 430             | 350             | 270             | 350                            | 350                          |
| Service Value                | 7.1            | 6.6             | 7.8             | 7.7             | 7.8                            | 7.8                          |
| Power Factor                 | 0.98           | 0.98            | 0.98            | 0.99            | 0.98                           | 0.98                         |
| Blade Span (mm/inch)         | 900/36         | 1050/42         | 1200/48         | 1400/56         | 1200/48                        | 1200/48                      |

#### Rated specifications of various sizes is given below for ready reference:

We recommend to,

- > Replace existing fans with energy efficient fans in failure replacement or by phase manner
- Replace existing ceiling fans of 70 -80 Watts with 35 watts BLDC fan.

# 4.3 SAVING CALCULATION OF ECM#1 REPLACE EXISTING CEILING FANS WITH LOW WATTAGE CEILING FANS ON FAILURE REPLACEMENT BASIS

Table 7: Energy and Cost Saving Calculation for ECM#1

| Particulars                                    | Parameters     | Future Scenario                            |
|------------------------------------------------|----------------|--------------------------------------------|
| Type of Recommendations                        | -              | Install new technology<br>BLDC ceiling fan |
| Present Ceiling fan                            | Nos            | 749                                        |
| Present Ceiling fan Power                      | Watts          | 80                                         |
| Annual Operational Days                        | Days/Annum     | 210                                        |
| Daily Operational Hours                        | Hours/Day      | 7                                          |
| Plant's Present ceiling fan energy Consumption | kWh/Annum      | 88082.4                                    |
| Proposed New Ceiling Fan Power                 | Watts          | 28                                         |
| Proposed Ceiling fan Energy Consumption        | kWh/Annum      | 30828.84                                   |
| Annual Energy Saving Potential                 | kWh/Annum      | 57253.56                                   |
| Unit cost                                      | Rs/Unit        | 3.46                                       |
| Savings in Energy Bill Per Annum               | Rs. Lakh/Annum | 1.98                                       |
| Investment                                     | Lakhs Rupees   | 18.725                                     |

### CHAPTER:5 STUDY OF LIGHTING SYSTEMS

#### 5.1 INSTALLED LIGHTING STUDY & PERFORMANCE ANALYSIS

The College has already taken an energy efficient step to replace the FL tube lights with the LED tub light. College have around 774 no. of LED light of 36 watts or 263 FL lights of 36 watts. These FL Lights also be replaced with the LED light to reduce energy consumption. Following are the details of building wise this.

|       |         |                                             | Tube Light |         |               |  |
|-------|---------|---------------------------------------------|------------|---------|---------------|--|
| Sr No | Room No | Particular                                  | LED (36W)  | FL(36W) | BULB<br>(24W) |  |
| 1     | 1       | Principal Room                              | 3          | 0       | 0             |  |
| 2     | 2       | Steno Room                                  | 1          | 0       | 0             |  |
| 3     | 3       | Committee Room                              | 6          | 0       | 0             |  |
| 4     | 3-A     | First Aid Room                              | 0          | 0       | 0             |  |
| 5     | 4       | Administrative Office                       | 36         | 0       | 0             |  |
| 6     | 5       | Electric Substation                         | 0          | 0       | 0             |  |
| 7     | 6       | Smart Lecture Room-1                        | 13         | 0       | 0             |  |
| 8     | 7       | Staff Room                                  | 2          | 0       | 0             |  |
| 9     | 8       | Smart Class Room                            | 0          | 4       | 0             |  |
| 10    | 9       | Class Room                                  | 0          | 4       | 0             |  |
| 11    | 10      | E- Pathshala                                | 0          | 4       | 0             |  |
| 12    | 11      | Smart Class Room                            | 2          | 0       | 0             |  |
| 13    | 12      | Food Science Lab/Nutritional assessment Lab | 2          | 0       | 0             |  |

#### Table 8 Existing Installed Lighting System Details

|       |         |                                                     | Tube Light |         |               |
|-------|---------|-----------------------------------------------------|------------|---------|---------------|
| Sr No | Room No | Particular                                          | LED (36W)  | FL(36W) | BULB<br>(24W) |
| 14    | 13      | Cafeteria/ Institutional food<br>administration lab | 6          | 0       | 0             |
| 15    | 14      | Microbiology Lab                                    | 18         | 0       | 0             |
| 16    | 15      | Seminar Room                                        | 1          | 0       | 1             |
| 17    | 16      | Store                                               | 0          | 0       | 1             |
| 18    | 17      | Basement Hall No - 1                                | 0          | 2       | 0             |
| 19    | 18      | Basement Hall No-2                                  | 0          | 3       | 0             |
| 20    | 19      | Basement Hall No-3                                  | 2          | 0       | 0             |
| 21    | 20      | Store                                               | 0          | 2       | 0             |
| 22    | 21      | Store                                               | 0          | 0       | 1             |
| 23    | 22      | M.Sc Food Lab                                       | 18         | 0       | 0             |
| 24    | 23      | Store                                               | 0          | 0       | 1             |
| 25    | 24      | B.Sc. Food Lab                                      | 18         | 0       | 0             |
| 26    | 25      | Lab Staff Room                                      | 3          | 0       | 0             |
| 27    | 26      | Teaching Staff Room                                 | 3          | 0       | 0             |
| 28    | 27      | Bio Chemistry lab                                   | 9          | 9       | 0             |
| 29    | 28      | Diet Clinic/Staff room                              | 2          | 0       | 0             |
| 30    | 29      | Computer Lab                                        | 18         | 0       | 0             |
| 31    | 30      | IQAC Room                                           | 0          | 6       | 0             |
| 32    | 31      | Visitors Room                                       | 1          | 0       | 0             |
| 33    | 32      | Library- Main Hall                                  | 0          | 49      | 0             |

|       |         |                                                     | Tube Light |         |               |  |
|-------|---------|-----------------------------------------------------|------------|---------|---------------|--|
| Sr No | Room No | Particular                                          | LED (36W)  | FL(36W) | BULB<br>(24W) |  |
| 34    | 32-A    | Newspaper, Periodical & Magazine<br>Section Library | 8          | 0       | 0             |  |
| 35    | 32-B    | Reference Section                                   | 8          | 0       | 0             |  |
| 36    | 33      | Conference Hall                                     | 15         | 0       | 0             |  |
| 37    | 34      | NCC Cell                                            | 0          | 2       | 0             |  |
| 38    | 35      | Smart Lecture Room-II                               | 13         | 0       | 0             |  |
| 39    | 36      | CAD Lab                                             | 2          | 2       | 0             |  |
| 40    | 37      | Dyeing Lab                                          | 2          | 0       | 0             |  |
| 41    | 37-A    | Printing Lab                                        | 0          | 10      | 0             |  |
| 42    | 38      | Pattern Making Lab                                  | 0          | 8       | 0             |  |
| 43    | 39      | Textile Testing Lab                                 | 0          | 2       | 0             |  |
| 44    | 39-A    | Staff Room                                          | 3          | 0       | 0             |  |
| 45    | 40      | Heritage Resource Centre                            | 2          | 0       | 0             |  |
| 46    | 40-A    | Weaving & Knitting Lab                              | 2          | 0       | 0             |  |
| 47    | 41      | PG Garment Construction Lab - I                     | 0          | 8       | 0             |  |
| 48    | 42      | PG Garment Construction Lab - II                    | 0          | 8       | 0             |  |
| 49    | 43      | Department Library                                  | 2          | 0       | 0             |  |
| 50    | 44      | Seminar Hall                                        | 6          | 0       | 0             |  |
| 51    | 45      | Staff Room                                          | 0          | 2       | 0             |  |
| 52    | 46      | UG Garment Construction lab-I                       | 0          | 17      | 0             |  |

|       |                    |                                           | Tube Light |         |               |  |
|-------|--------------------|-------------------------------------------|------------|---------|---------------|--|
| Sr No | Room No Particular |                                           | LED (36W)  | FL(36W) | BULB<br>(24W) |  |
| 53    | 47                 | Store Room                                | 0          | 2       | 0             |  |
| 54    | 48                 | Smart Class Room                          | 0          | 4       | 0             |  |
| 55    | 49                 | Physics Lab                               | 18         | 0       | 0             |  |
| 56    | 50                 | Nodal officer                             | 0          | 2       | 0             |  |
| 57    | 51                 | Control Room                              | 2          | 0       | 0             |  |
| 58    | 52                 | Chemistry Lab.                            | 0          | 17      | 0             |  |
| 59    | 53                 | Staff Room                                | 0          | 2       | 0             |  |
| 60    | 54                 | Home Management & Furnishing Lab<br>House | 9          | 0       | 0             |  |
| 61    | 54-A               | Auto CAD Lab                              | 3          | 0       | 0             |  |
| 62    | 54-B               | Ergonomics Lab                            | 6          | 0       | 0             |  |
| 63    | 54-C               | FRM Staff Room                            | 3          | 0       | 0             |  |
| 64    | 55                 | Family Resource Lab                       | 19         | 0       | 0             |  |
| 65    | 55-A               | Equipment Lab                             | 3          | 0       | 0             |  |
| 66    | 55-B               | Design Studio                             | 4          | 0       | 0             |  |
| 67    | 56                 | Smart Lecture Theatre                     | 8          | 0       | 0             |  |
| 68    | 57                 | NSS Room                                  | 2          | 0       | 0             |  |
| 69    | 58                 | Smart Class Room                          | 0          | 6       | 0             |  |
| 70    | 59 -I              | Smart Classroom                           | 0          | 5       | 0             |  |
| 71    | 59-11              | Smart Class/ HD Lab-III                   | 0          | 8       | 0             |  |
| 72    | 60                 | Counselling Cell                          | 0          | 10      | 0             |  |

|       | No Room No Particular |                                  | Tube Light |         |               |
|-------|-----------------------|----------------------------------|------------|---------|---------------|
| Sr No |                       | Particular                       | LED (36W)  | FL(36W) | BULB<br>(24W) |
| 73    | 61                    | Staff Room                       | 0          | 1       | 0             |
| 74    | 62                    | Smart Class                      | 0          | 4       | 0             |
| 75    | 63 -A                 | HD Lab-I                         | 0          | 6       | 0             |
| 76    | 63-B                  | HD Lab-II                        | 0          | 6       | 0             |
| 77    | 64                    | HD Department HOD Office         | 2          | 0       | 0             |
| 78    | 65                    | HD Lab Staff Room                | 2          | 0       | 0             |
| 79    | 66                    | Botany Lab                       | 16         | 0       | 0             |
| 80    | 67                    | Staff Room                       | 2          | 0       | 0             |
| 81    | 68                    | HOD Botany Office                | 2          | 0       | 0             |
| 82    | 69                    | Zoology Lab                      | 0          | 23      | 0             |
| 83    | 70                    | Staff Room                       | 3          | 0       | 0             |
| 84    | 71                    | HOD Zoology office               | 2          | 0       | 0             |
| 85    | 72                    | Faculty Room                     | 2          | 0       | 0             |
| 86    | 73                    | Art Lab                          | 17         | 0       | 0             |
| 87    | 74                    | Staff Room                       | 2          | 0       | 0             |
| 88    | 75                    | Art Lab Store                    | 2          | 0       | 0             |
| 89    | -                     | Multimedia Research Block        | 24         | 0       | 30            |
| 90    | -                     | Academic Hall Lobby Ground Floor | 13         | 3       | 0             |
| 91    | -                     | Academic Hall Lobby First Floor  | 12         | 3       | 0             |
| 92    | -                     | Academic Hall Lobby Second Floor | 12         | 6       | 0             |

|       |                          |                                            |           | Tube Light |               |  |  |  |
|-------|--------------------------|--------------------------------------------|-----------|------------|---------------|--|--|--|
| Sr No | Sr No Room No Particular |                                            | LED (36W) | FL(36W)    | BULB<br>(24W) |  |  |  |
| 93    | -                        | BSC Hostel Mess Hall (OLD Wing)            | 16        | 0          | 0             |  |  |  |
| 94    | -                        | BSC Hostel Mess Cooking Area (Old<br>Wing) | 14        | 0          | 0             |  |  |  |
| 95    | -                        | BSC Hostel Common Room (Old<br>Wing)       | 12        | 0          | 0             |  |  |  |
| 96    | -                        | BSC Hostel Room & Others (Old<br>Wing)     | 110       | 0          | 0             |  |  |  |
| 97    | -                        | BSC Hostel Room & Others (New<br>Wing)     | 110       | 0          | 0             |  |  |  |
| 98    | -                        | M.Sc. Hostel Ground Floor                  | 20        | 0          | 0             |  |  |  |
| 99    | -                        | M.Sc. Hostel Rooms & Others                | 86        | 0          | 0             |  |  |  |
| 100   | -                        | Auditorium                                 | 0         | 70         | 0             |  |  |  |
| 101   | -                        | Leisure Lounge                             | 8         | 0          | 0             |  |  |  |
| 102   | -                        | Chatanya Nursery lab.                      | 19        | 15         | 0             |  |  |  |
| 103   | -                        | Indoor Badminton Hall                      | 7         | 0          | 0             |  |  |  |
| 104   | -                        | Music Room                                 | 0         | 0          | 1             |  |  |  |
| 105   | -                        | Physical Education Room                    | 3         | 0          | 0             |  |  |  |
| 106   | -                        | Canteen                                    | 14        | 0          | 0             |  |  |  |
| 107   | -                        | Administrative Office                      | 36        | 0          | 0             |  |  |  |
| 108   | -                        | Basement                                   | 12        | 0          | 0             |  |  |  |

| Type of Lamp     | Wattage | Quantity |
|------------------|---------|----------|
| Tube light (CFL) | 36 Watt | 263      |
| Tube Light (LED) | 36 Watt | 774      |
| LED Bulb         | 24 Watt | 30       |

*Table 9: Total nos of different lighting fixtures are tabulated below* 

# 5.2 ECM#2 REPLACE EXISTING OLD CONVENTIONAL LAMPS WITH LED LOW WATTAGE LAMPS ON FAILURE REPLACEMENT BASIS

#### New technology LED lighting

An LED lamp is a light-emitting diode (LED) product that is assembled into a lamp (or light bulb) for use in lighting fixtures. LED lamps have a lifespan and electrical efficiency that is several times better than incandescent lamps, and significantly better than most fluorescent lamps, with some chips able to emit more than 100 lumens per watt. General-purpose lighting needs white light. LEDs emit light in a very narrow band of wavelengths, emitting light of a colour characteristic of the energy band-gap of the semiconductor material used to make the LED.

The comparison of power consumption for conventional fluorescent lamp and the energy efficient LED lamp is given below:

#### Advantages of Energy Efficient LED Lamps

- ♀ High efficacy (Lumens / Watt)
- Environmentally friendly
- Reduces sick building syndrome
- Operates at low voltage

#### We recommend to

- Replace existing fluorescent lights with new energy efficient lights to reduce energy consumption. The details of proposed lighting fixture as mentioned in Table No-9.
- It was observed that campus do not have flood lights for surveillance during night hours. Thus, it is recommended to install flood lights at proper places in the campus for safety and security of Institute campus assets.

#### 5.3 SAVING CALCULATION ECM#2 REPLACE EXISTING OLD CONVENTIONAL LAMPS WITH LED

| Particulars                                   | Parameters        | Future Scenario  |  |
|-----------------------------------------------|-------------------|------------------|--|
| Type of Recommendations                       | Install new techn | ology LED Lights |  |
| Present FL Tube light                         | Nos               | 263              |  |
| Present FL Tube light Power                   | Watts             | 43               |  |
| Annual Operational Days                       | Days/Annum        | 245              |  |
| Daily Operational Hours                       | Hours/Day         | 7                |  |
| Plant's Present Light Energy Consumption      | kWh/Annum         | 19394.9          |  |
| Proposed New LED Tube light Power             | Watts             | 18               |  |
| Proposed LED Tube light Energy<br>Consumption | kWh/Annum         | 8118.81          |  |
| Annual Energy Saving Potential                | kWh/Annum         | 11276.1          |  |
| Unit cost                                     | Rs/Unit           | 3.46             |  |
| Savings in Energy Bill Per Annum              | Rs. Lakh/Annum    | 0.39             |  |
| Investment                                    | Lakhs Rupees      | 0.58             |  |

### **CHAPTER:6 STUDY OF AIR CONDITIONING SYSTEMS**

#### 6.1 AIR CONDITIONING STUDY & PERFORMANCE ANALYSIS

The College have Splits ACs of 1.5 TR to 2 TR are installed in the building. During the audit measurement were not made to evaluate the performance of ACs due to winter season. Thus, Details of the ACs in building are collected and based on star rating by BEE of Existing Air conditioners we suggest to change the existing ACs with new 5 Star ACs:

#### Table 11: Air Conditioning installed at Institute

| Sr | Room | Dortioulor                                       | Nos of    | Turne | Maka    | TR       | Cooling | Star   |
|----|------|--------------------------------------------------|-----------|-------|---------|----------|---------|--------|
| No | No   | Particular                                       | Installed | туре  | WIAKE   | Capacity | (W)     | Rating |
| 1  | 1    | Principal Room                                   | 2         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 2  | 3    | Committee Room                                   | 2         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 3  | 4    | Admin Office                                     | 3         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 4  | 4    | Administrative Office                            | 3         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 5  | 10   | E- Pathshala                                     | 2         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 6  | 13   | Cafeteria/ Institutional food administration lab | 1         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 7  | 29   | Computer Lab                                     | 2         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 8  | 30   | IQAC Room                                        | 1         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 9  | 31   | Visitors Room                                    | 1         | Split | Carrier | 1.5      | 6245    | 3 Star |
| 10 | 32   | Library- Main Hall                               | 8         | Split | Hitachi | 2        | 6800    | 3 Star |
| 11 | 36   | CAD Lab                                          | 1         | Split | Hitachi | 2        | 6800    | 3 Star |
| 12 | 39   | C.T. Staff Room                                  | 1         | Split | Hitachi | 2        | 6800    | 3 Star |

| Sr    | Room | Nos of                                                 |                  | <b>D4</b> - kee | TR      | Cooling  | Star  |        |
|-------|------|--------------------------------------------------------|------------------|-----------------|---------|----------|-------|--------|
| No No |      | Particular                                             | ACS<br>Installed | туре            | маке    | Capacity | (W)   | Rating |
| 13    | 54   | Home Management &<br>Furnishing Lab House              | 1                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 14    | 57   | FRM Staff Room                                         | 2                | Split           | Hitachi | 2        | 6800  | 3 Star |
| 15    | 59   | Smart class/HDFR Lab-III                               | 1                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 16    | 62   | Smart Class                                            | 1                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 17    | 32-A | Newspaper, Periodical &<br>Magazine Section<br>Library | 1                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 18    | -    | Multimedia Research<br>Block                           | 4                | Split           | Carrier | 4.5      | 15825 | 3 Star |
| 19    | -    | Circulation Area                                       | 2                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 20    | -    | BSC Hostel Common<br>Room (Old)                        | 1                | Split           | Carrier | 1.5      | 6245  | 3 Star |
| 21    | -    | Auditorium                                             | 17               | Split           | Carrier | 1.5      | 6245  | 3 Star |
|       |      | Total                                                  | 57               |                 |         |          |       |        |

#### 6.2 ECM#3 REPLACE EXISTING 3 STAR ACS WITH INVERTER TECHNOLOGY 5 STAR ACS ON FAILURE REPLACEMENT BASIS

The lower the kW/TR value, lower will be the power consumption AC and hence lower will be impact on energy cost. So, if we can see in above table 5 STARs ACs, having lower SEC i.e., kW/ TR as compared to 3-star ACs of the same rating. Thus, obviously it is recommended to install 5-star AC preferably to reduce operational cost.

Now -a – Days new star rated inverter-based air conditioners are coming in market having lower values of kW/TR. this means lower specific energy consumption for the same output. The rated Specific energy consumption of split Air conditioner is in the range of 0.90-1.0 kW/TR. this is much lower than the specific energy consumption of installed air conditioner. In addition to this these air conditioners are coming with inverter-based technology.

#### What is inverter technology?

A regular air conditioner will always run at peak power requirement when the compressor is running. An air conditioner with inverter technology will run continuously but will draw only that much power that is required to keep the temperature stable at the level desired. So, it's kind of automatically adjusts its capacity based on the requirement of the room it is cooling. Thus, drawing much less power and consuming lesser units of electricity.

Thus, it is advisable to replace air conditioners which are old and having higher specific energy consumption. Since the operational hours of air conditioners are very less, it will be beneficial if facility team replace old air conditioner having higher running hours on priority basis.

#### We recommend to

- > Replace old air conditioner having higher running hours on priority on failure replacement basis
- Procure new air conditioner based on energy efficiency ratings provided by Bureau of energy efficiency.
- > Replace rest other non-energy efficient air conditioner based on failure basis.

#### 6.3 SAVING CALCULATION OF ECM#3 FOR AIR CONDITIONING

Table 12: Energy and Cost Saving Calculation for ECM#3

| Particulars                           | Parameters     | Future Scenario |
|---------------------------------------|----------------|-----------------|
| Type of Recommendations               | -              | 5-Star Split AC |
| Present Split AC                      | Nos            | 57              |
| Total Cooling LOAD                    | TR             | 103             |
| Present Split AC Power                | kW/TR          | 1.05            |
| Present Power Consumption             | kW             | 108.15          |
| Annual Operational Days               | Days/Annum     | 150             |
| Daily Operational Hours               | Hours/Day      | 7               |
| Plant's Present AC energy Consumption | kWh/Annum      | 113557.5        |
| Proposed 5-Star AC Power              | kW/TR          | 0.75            |
| Proposed Power Consumption            | kW             | 77.25           |
| Proposed 5-Star AC Energy Consumption | kWh/Annum      | 81112.5         |
| Annual Energy Saving Potential        | kWh/Annum      | 32445           |
| Unit cost                             | Rs/Unit        | 3.46            |
| Savings in Energy Bill Per Annum      | Rs. Lakh/Annum | 1.12            |
| Investment                            | Lakhs Rupees   | 22.8            |

### **CHAPTER:7 STUDY OF WATER PUMPING SYSTEMS**

#### 7.1 WATER PUMPING SYSTEMS

Institute uses Municipal Corporation water from domestic water consumption. For the primary storage of water, it is first collected on underground tank. After that through pumping the water with the help of Boosting station is transferred to over-head tank at roof of different block present at college. Further distribution of water is tabulated below. For calculating the actual efficiency of pump, the measurement done for the flow pressure and power of the existing running pump.

#### 7.2 ECM#4 REPLACE THE EXISTING RAW PUMPS WITH NEW ENERGY EFFICIENT PUMPS

As the pumps motor are rewind more thrice we recommend to change the existing pumps with new efficient pumps. Measured parameter during the audit is tabulated below

| Measured Parameter          |                 |             |            |                    |                    |       |                |  |  |  |
|-----------------------------|-----------------|-------------|------------|--------------------|--------------------|-------|----------------|--|--|--|
| Particulars                 | Flow<br>(m3/hr) | Head<br>(m) | Efficiency | Voltage in<br>Volt | Current in<br>Amps | P.F   | Power<br>in kW |  |  |  |
| Pump-1<br>M.Sc. Block       | 6               | 20          | 6.8%       | 411                | 12.26              | 0.560 | 4.8            |  |  |  |
| Pump-2<br>Academic<br>Block | 12              | 22          | 5.78%      | 412                | 19.36              | 0.898 | 12.56          |  |  |  |

We recommended to change the pumps with below proposed pumps

| Particulars           | Flow (m3/hr) | Head (m) | Power in kW |
|-----------------------|--------------|----------|-------------|
| Pump-1 M.Sc. Block    | 15           | 20       | 1.3 kW      |
| Pump-2 Academic Block | 15           | 20       | 1.3 kW      |

| Particulars                                                             | UoM                   | Pump-1<br>M.Sc. Block   | Pump-2<br>Academic Block |  |
|-------------------------------------------------------------------------|-----------------------|-------------------------|--------------------------|--|
| Motor rating of the existing Pump                                       | kW                    | 7.5                     | 3.73                     |  |
| Actual power drawn                                                      |                       | 12.56                   | 4.85                     |  |
| Total input power of both the pumps                                     |                       | 12.56                   | 4.85                     |  |
| Overall Design Efficiency of the existing pump motor set                | %                     | 0.61                    | 0.61                     |  |
| Suggested Rating of the new Pump Motor set                              |                       | 25 mH; 4 lps;<br>1.5 kW | 25 mH; 4 lps;<br>1.5 kW  |  |
| Overall Design Efficiency of the new Pump Motor Set                     |                       | 0.718                   | 0.718                    |  |
| Motor                                                                   |                       | 0.925                   | 0.925                    |  |
| Pump                                                                    |                       | 0.776                   | 0.776                    |  |
| Estimated reduction in the power drawn for the same work done           | kW                    | 1.42                    | 1.42                     |  |
| Working Hour per annum                                                  | Hrs/annum             |                         | 1800                     |  |
| Existing Energy Consumption                                             | kWh/annum             | 3                       | 1338                     |  |
| Energy Saving                                                           | kWh/annum             | 5120                    |                          |  |
| Grid Power Rate                                                         | Rs per kWh            |                         | 3.46                     |  |
| Monetary Benefit                                                        | Rs Lakhs per<br>annum | 0.185                   |                          |  |
| Estimated Investment for new energy efficient pump motor set with drive | Rs Lakhs              |                         | 0.25                     |  |

#### 7.3 SAVING CALCULATION OF ECM#4 REPLACE OLD PUMPS WITH NEW ENERGY EFFICIENT PUMPS.

# CHAPTER:8 LUX LEVEL STUDY

The lux level study of different areas or rooms were done during the audit in the College. Some area has good lux level but some has to improve.

#### Table 13: Lux Level Measured Values

| Particular                                             | cular Measured Lux Level |     | Average Lux Level | Recommended AS per IS 3646 |        |         |
|--------------------------------------------------------|--------------------------|-----|-------------------|----------------------------|--------|---------|
| Principal Room                                         | 264                      | 241 | 380               | 376                        | 315.25 | 250-300 |
| Steno Room                                             | 291                      | 276 | 262               | 298                        | 281.75 | 250-300 |
| Committee Room                                         | 192                      | 182 | 270               | 261                        | 226.25 | 250-300 |
| First Aid Room                                         | 186                      | 191 | 177               | 166                        | 180    | 250-300 |
| Administrative<br>Office                               | 242                      | 281 | 231               | 188                        | 235.5  | 250-300 |
| Electric Substation                                    | 116                      | 109 | 131               | 95                         | 112.75 | 300-350 |
| Smart Lecture<br>Room-1                                | 260                      | 310 | 198               | 268                        | 259    | 400-500 |
| Staff Room                                             | 261                      | 272 | 281               | 255                        | 267.25 | 250-300 |
| Smart Class Room                                       | 116                      | 125 | 91                | 102                        | 108.5  | 250-300 |
| Class Room                                             | 120                      | 91  | 99                | 115                        | 106.25 | 250-300 |
| E- Pathshala                                           | 138                      | 166 | 152               | 148                        | 151    | 250-300 |
| Smart Class Room                                       | 255                      | 270 | 281               | 299                        | 276.25 | 250-300 |
| Food Science<br>Lab/Nutritional<br>assessment Lab      | 719                      | 616 | 849               | 900                        | 771    | 400-500 |
| Cafeteria/<br>Institutional food<br>administration lab | 198                      | 216 | 248               | 186                        | 212    | 400-500 |

| Particular                 | Measured Lux Level |      | Average Lux Level | Recommended AS per IS 3646 |        |         |
|----------------------------|--------------------|------|-------------------|----------------------------|--------|---------|
| Microbiology Lab           | 216                | 248  | 259               | 231                        | 238.5  | 300-400 |
| Seminar Room               | 900                | 1100 | 1058              | 1256                       | 1078.5 | 400-500 |
| Store                      | 316                | 289  | 296               | 305                        | 301.5  | 200-250 |
| Basement Hall No -<br>1    | 105                | 98   | 116               | 109                        | 107    | 300-400 |
| Basement Hall No-2         | 316                | 289  | 296               | 305                        | 301.5  | 300-400 |
| Basement Hall No-3         | 216                | 208  | 246               | 253                        | 230.75 | 300-400 |
| Store                      | 116                | 98   | 105               | 117                        | 109    | 200-250 |
| Store                      | 152                | 148  | 168               | 159                        | 156.75 | 200-250 |
| M.Sc. Food Lab             | 98                 | 105  | 116               | 89                         | 102    | 300-400 |
| Store                      | 166                | 176  | 181               | 216                        | 184.75 | 200-250 |
| B.Sc. Food Lab             | 118                | 104  | 109               | 111                        | 110.5  | 300-400 |
| Lab Staff Room             | 181                | 176  | 162               | 156                        | 168.75 | 250-300 |
| Teaching Staff<br>Room     | 170                | 186  | 177               | 162                        | 173.75 | 250-300 |
| Bio Chemistry lab          | 153                | 146  | 132               | 128                        | 139.75 | 300-400 |
| Diet Clinic/Staff<br>room  | 350                | 366  | 372               | 398                        | 371.5  | 250-300 |
| Computer Lab               | 170                | 187  | 182               | 178                        | 179.25 | 300-400 |
| IQAC Room                  | 358                | 399  | 402               | 386                        | 386.25 | 250-300 |
| Visitors Room              | 112                | 118  | 126               | 132                        | 122    | 200-250 |
| Library- Main Hall         | 670                | 708  | 750               | 799                        | 731.75 | 300-400 |
| Newspaper,<br>Periodical & | 688                | 716  | 820               | 777                        | 750.25 | 200-300 |

| Particular                          | М   | easure | d Lux L | evel | Average Lux Level | Recommended AS per IS 3646 |
|-------------------------------------|-----|--------|---------|------|-------------------|----------------------------|
| Magazine Section<br>Library         |     |        |         |      |                   |                            |
| Reference Section                   | 66  | 72     | 48      | 56   | 60.5              | 250-300                    |
| Conference Hall                     | 40  | 42     | 36      | 39   | 39.25             | 300-350                    |
| NCC Cell                            | 289 | 276    | 254     | 249  | 267               | 250-300                    |
| Smart Lecture<br>Room-II            | 287 | 266    | 258     | 247  | 264.5             | 250-300                    |
| CAD Lab                             | 108 | 121    | 115     | 103  | 111.75            | 300-400                    |
| Dyeing Lab                          | 104 | 105    | 127     | 99   | 108.75            | 300-400                    |
| Printing Lab                        | 215 | 198    | 205     | 209  | 206.75            | 300-400                    |
| Pattern Making Lab                  | 335 | 398    | 298     | 356  | 346.75            | 300-400                    |
| Textile Testing Lab                 | 215 | 256    | 243     | 221  | 233.75            | 300-400                    |
| Staff Room                          | 198 | 186    | 175     | 182  | 185.25            | 250-300                    |
| Heritage Resource<br>Centre         | 150 | 200    | 158     | 220  | 182               | 250-300                    |
| Weaving & Knitting<br>Lab           | 198 | 216    | 248     | 186  | 212               | 300-400                    |
| PG Garment<br>Construction Lab - I  | 216 | 248    | 259     | 231  | 238.5             | 300-400                    |
| PG Garment<br>Construction Lab - II | 215 | 256    | 243     | 221  | 233.75            | 300-400                    |
| Department Library                  | 198 | 186    | 175     | 182  | 185.25            | 300-400                    |
| Seminar Hall                        | 150 | 200    | 158     | 220  | 182               | 300-400                    |
| Staff Room                          | 186 | 191    | 177     | 166  | 180               | 250-300                    |

| Particular                                   | М   | easure | d Lux L | evel | Average Lux Level | Recommended AS per IS 3646 |
|----------------------------------------------|-----|--------|---------|------|-------------------|----------------------------|
| UG Garment<br>Construction lab-I             | 242 | 281    | 231     | 188  | 235.5             | 300-400                    |
| Store Room                                   | 116 | 109    | 131     | 95   | 112.75            | 200-250                    |
| Smart Class Room                             | 202 | 198    | 260     | 302  | 240.5             | 250-300                    |
| Physics Lab                                  | 261 | 272    | 281     | 255  | 267.25            | 300-400                    |
| Nodal officer                                | 155 | 200    | 310     | 298  | 240.75            | 250-300                    |
| Control Room                                 | 200 | 265    | 198     | 301  | 241               | 300-400                    |
| Chemistry Lab.                               | 250 | 360    | 307     | 296  | 303.25            | 300-400                    |
| Staff Room                                   | 230 | 250    | 280     | 260  | 255               | 250-300                    |
| Home Management<br>& Furnishing Lab<br>House | 312 | 280    | 306     | 213  | 277.75            | 300-400                    |
| Auto CAD Lab                                 | 216 | 356    | 288     | 296  | 289               | 300-400                    |
| Ergonomics Lab                               | 186 | 191    | 177     | 166  | 180               | 300-400                    |
| FRM Staff Room                               | 242 | 281    | 231     | 188  | 235.5             | 250-300                    |
| Family Resource<br>Lab                       | 289 | 320    | 268     | 366  | 310.75            | 300-400                    |
| Equipment Lab                                | 186 | 191    | 177     | 166  | 180               | 300-400                    |
| Design Studio                                | 242 | 281    | 231     | 188  | 235.5             | 300-400                    |
| Smart Lecture                                | 264 | 241    | 380     | 376  | 315.25            | 250 200                    |
| Theatre                                      | 291 | 276    | 262     | 298  | 281.75            | 250-300                    |
| NSS Room                                     | 172 | 206    | 198     | 222  | 199.5             | 250-300                    |
| Smart Class Room                             | 212 | 196    | 160     | 178  | 186.5             | 250-300                    |
| Smart Classroom                              | 222 | 196    | 170     | 163  | 187.75            | 250-300                    |

| Particular                          | М   | leasure | d Lux L | evel | Average Lux Level | Recommended AS per IS 3646 |
|-------------------------------------|-----|---------|---------|------|-------------------|----------------------------|
| Smart Class/ HD<br>Lab-III          | 900 | 1100    | 1058    | 1256 | 1078.5            | 300-400                    |
| Counselling Cell                    | 316 | 289     | 296     | 305  | 301.5             | 300-400                    |
| Staff Room                          | 178 | 155     | 102     | 96   | 132.75            | 200-250                    |
| Smart Class                         |     |         |         |      | #DIV/0!           | 250-300                    |
| HD Lab-I                            | 105 | 98      | 116     | 109  | 107               | 300                        |
| HD Lab-II                           | 316 | 289     | 296     | 305  | 301.5             | 300-400                    |
| HD Department<br>HOD Office         | 215 | 270     | 280     | 311  | 269               | 300-400                    |
| HD Lab Staff Room                   | 261 | 272     | 281     | 255  | 267.25            | 300-400                    |
| Botany Lab                          | 155 | 200     | 310     | 298  | 240.75            | 300-400                    |
| Staff Room                          | 200 | 265     | 198     | 301  | 241               | 250-300                    |
| HOD Botany Office                   | 250 | 296     | 307     | 246  | 274.75            | 250-300                    |
| Zoology Lab                         | 263 | 196     | 263     | 265  | 246.75            | 300-400                    |
| Staff Room                          | 213 | 216     | 302     | 186  | 229.25            | 200-250                    |
| HOD Zoology office                  | 262 | 206     | 198     | 222  | 222               | 200-250                    |
| Faculty Room                        | 200 | 196     | 160     | 178  | 183.5             | 200-250                    |
| Art Lab                             | 200 | 265     | 198     | 301  | 241               | 300-400                    |
| Staff Room                          | 250 | 296     | 307     | 246  | 274.75            | 250-300                    |
| Art Lab Store                       | 186 | 191     | 177     | 166  | 180               | 200-250                    |
| Multimedia<br>Research Block        | 242 | 281     | 231     | 188  | 235.5             | 300-350                    |
| Academic Hall<br>Lobby Ground Floor | 116 | 109     | 131     | 95   | 112.75            | 150-200                    |

| Particular                          | M   | easure | d Lux L | evel | Average Lux Level | Recommended AS per IS 3646 |
|-------------------------------------|-----|--------|---------|------|-------------------|----------------------------|
| Academic Hall<br>Lobby First Floor  | 202 | 198    | 260     | 302  | 240.5             | 150-200                    |
| Academic Hall<br>Lobby Second Floor | 261 | 272    | 281     | 255  | 267.25            | 150-200                    |

Lux Level in some areas of the library was found very low, it recommended to increase lux level by installed suitable LED light system for the area.

#### Table 14: Library Lux Level

| Particular |                     | Measured Lu | x Level        |     | Average Lux<br>Level | Standard<br>Values       |  |  |  |  |  |  |  |
|------------|---------------------|-------------|----------------|-----|----------------------|--------------------------|--|--|--|--|--|--|--|
|            | Library First Floor |             |                |     |                      |                          |  |  |  |  |  |  |  |
| Rack No-1  | 136                 | 142         | 126            | 139 | 136                  | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-2  | 24                  | 16          | 34             | 29  | 26                   | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-3  | 115                 | 102         | 96             | 89  | 101                  | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-4  | 106                 | 98          | 109            | 92  | 101                  | 200-500 (average<br>300) |  |  |  |  |  |  |  |
|            |                     | Libra       | ary Ground Flo | oor |                      |                          |  |  |  |  |  |  |  |
| Rack No-1  | 19                  | 9           | 15             | 12  | 14                   | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-2  | 26                  | 32          | 21             | 29  | 27                   | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-3  | 56                  | 66          | 52             | 74  | 62                   | 200-500 (average<br>300) |  |  |  |  |  |  |  |
| Rack No-4  | 123                 | 105         | 115            | 109 | 113                  | 200-500 (average<br>300) |  |  |  |  |  |  |  |

| Particular |     | Measured Lu | x Level        |     | Average Lux<br>Level     | Standard<br>Values       |
|------------|-----|-------------|----------------|-----|--------------------------|--------------------------|
| Rack No-5  | 169 | 184         | 184 198 162    |     | 178                      | 200-500 (average<br>300) |
| Rack No-6  | 146 | 159         | 168            | 143 | 154                      | 200-500 (average<br>300) |
| Rack No-7  | 68  | 56          | 10             | 3   | 34                       | 200-500 (average<br>300) |
| Rack No-8  | 109 | 115 105 121 |                | 113 | 200-500 (average<br>300) |                          |
|            |     | Libr        | ary Second Flo | oor |                          |                          |
| Rack No-1  | 22  | 18          | 36             | 29  | 26                       | 200-500 (average<br>300) |
| Rack No-2  | 86  | 98          | 102            | 110 | 99                       | 200-500 (average<br>300) |
| Rack No-3  | 115 | 102         | 96             | 89  | 101                      | 200-500 (average<br>300) |
| Rack No-4  | 56  | 66          | 52             | 74  | 62                       | 200-500 (average<br>300) |
| Rack No-5  | 166 | 176         | 158            | 149 | 162                      | 200-500 (average<br>300) |
| Rack No-6  | 78  | 69          | 86             | 72  | 76                       | 200-500 (average<br>300) |
| Rack No-7  | 18  | 15          | 29             | 23  | 21                       | 200-500 (average<br>300) |
| Rack No-8  | 113 | 109         | 118            | 120 | 115                      | 200-500 (average<br>300) |

#### 8.1 WATER COOLERS

#### Table 15: Water Coolers

| Sr No | Location                    | Quantity | Wattage |
|-------|-----------------------------|----------|---------|
| 1     | Ground Floor Academic Block | 1        | 1550    |
| 2     | 1st Floor                   | 1        | 1550    |
| 3     | 2nd Floor                   | 1        | 1550    |
|       | Total                       |          | 4.65 kW |

#### 8.2 WATER DISPENSERS

#### Table 16:Water Dispenser

| Sr No | Location       | Quantity         | Wattage |  |  |
|-------|----------------|------------------|---------|--|--|
| 1     | HD Lab         | 1                | 500     |  |  |
| 2     | C.T. Lab       | 1                | 500     |  |  |
| 3     | FRM Staff Room | FRM Staff Room 1 |         |  |  |
| 4     | Admin Office   | 1                | 500     |  |  |
| 5     | Computer Lab   | 1                | 500     |  |  |
|       | То             | 2.5 kW           |         |  |  |

### **CHAPTER:9 SUMMARY**

#### 9.1 CUMULATIVE ENERGY SAVING OPPORTUNITIES

| Particulars                                                                                              |        | Annual | Estimated<br>Investment |               |              |
|----------------------------------------------------------------------------------------------------------|--------|--------|-------------------------|---------------|--------------|
|                                                                                                          | kWh    | ТоЕ    | CO2                     | Rs in<br>Lakh | (Rs in Lakh) |
| Replace Existing Ceiling Fans<br>with low wattage Ceiling Fans on<br>Failure Replacement Basis           | 57253  | 4.92   | 46.9                    | 1.98          | 18.75        |
| Replace Existing old<br>Conventional Lamps with LED<br>Low wattage Lamps on Failure<br>Replacement Basis | 11276  | 0.97   | 9.2                     | 0.39          | 0.58         |
| Replace Existing 3 Star ACs with<br>Inverter Technology 5 Star ACs<br>on Failure Replacement Basis       | 32445  | 2.79   | 26.6                    | 1.12          | 22.8         |
| Replace the Existing Raw Pumps<br>with new Energy Efficient Pumps                                        | 5120   | 0.44   | 4.2                     | 0.18          | 0.25         |
| Total                                                                                                    | 106094 | 9.12   | 86.9                    | 3.67          | 42.38        |

Except Pumps replacement project all other projects are to be implemented on phase manner and on failure replacement basis. Otherwise, payback period will be high

### CHAPTER:10 ANNEXURE

#### **10.1 ANNEXURE-1: AGENCY CERTIFICATE**



#### **10.2 ANNEXURE-2: AUDIT CERTIFICATE**

No: CERT/2023/09

#### **INNOVATIVE ENERGY CONSERVATION SOLUTIONS**

An ISO 9001:2015 Certified Organisation, Certificate No:- 1205Q169822

#### A: 205, Eco Towers, Shivalik Enclave Sector 125, Greater Mohali-140301

- E: Pankaj@iecsolutions.in
- **T:** +91-9685613238

DATE February 24, 2023 PLACE OF WORK: CHANDIGARH

### Energy, Environment & Green Audit Certificate

Is Issued To

#### GOVERNMENT HOME SCIENCE COLLEGE SECTOR 10, CHANDIGARH

for successful completion of Energy, Environment & Green Audit of the College for the Period FY 2022-23, conducted by **M/s Innovative Energy Conservation Solutions.** This Energy, Environment & Green Audit included Sectoral Audits in the reports i.e., Water, Energy, Waste cum Material, Air Quality & Noise, Biodiversity, outdoor environment, Health & well-being, Activities and Institutional management aspect cover.

The College is certified to have done exceptionally well to conserve energy, environment and ensuring sustainable development for the assessment period.

Duration of Audit: Feb-2022 to Jan-2023

Date of Issue: 24/02/2023

PANKAJ Digitally signed by PANKAJ DHOTE DATE: 2023.02.24 17:27:16 +05'30'

**Innovative Energy Conservation Solutions** 

Innovative Energy Conservation Selectioner



**Innovative Energy Conservation Solutions** 

An ISO 9001:2015 Certified Organisation, Certificate No:- 1205Q169822

Thank You

www.iecsolutions.in Pankaj Dhote



Enorm End

#### **10.3 ANNEXURE-3: ENERGY EFFICIENT EQUIPMENT SUPPLIERS**

| Product/ Equipment                         | Name                                                                          | Website                    |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------|----------------------------|--|--|
| Capacitors and APFC Panels                 | Standard Capacitors                                                           | www.standardcapacitors.com |  |  |
| Capacitors and APFC Panels                 | Ashish Consultant                                                             | www.ashishconsultant.com   |  |  |
| Capacitors/ Switch Gears/<br>Reactors etc. | Shreem Electric Ltd                                                           | www.shreemelectric.com     |  |  |
| Lighting Systems                           | Asian Electronics Ltd.                                                        | www.aelgroup.com           |  |  |
| Lighting Systems                           | Philips India Ltd                                                             | www.india.philips.com      |  |  |
| Lighting Systems                           | OSRAM India Ltd.                                                              | www.osram.in               |  |  |
| Lighting Systems                           | Wipro Lighting                                                                | www.wiprolighting.com      |  |  |
| Solar Products                             | Synergy Solar (P) Itd                                                         | www.synergysolar.net       |  |  |
| Solar Products                             | Inter Solar Systems (P)<br>Limited                                            | www.intersolarsystems.com  |  |  |
| Energy Efficient Pumps                     | Danfoss Industries Pvt.<br>Ltd.                                               | www.danfoss.com            |  |  |
| Energy Efficient Pumps                     | Mather & Platt Pumps<br>Ltd.                                                  | www.matherplatt.com        |  |  |
| Energy Efficient Pumps                     | Xylem Water Solutions<br>India Pvt. Ltd.<br>(Distributor of Lowara,<br>Italy) | www.lowara.com             |  |  |

Note: - The suppliers mentioned above are not the only ones or the best in the market. The management may contact other suppliers for competitive rates/ specifications.

#### 10.4 ANNEXURE-4: RECOMMENDED LUX LEVELS

| Entrance                                                        |   |                       |
|-----------------------------------------------------------------|---|-----------------------|
| Entrance halls, lobbies, waiting rooms                          | = | 200                   |
| Enquiry Desks                                                   | = | 500                   |
| Gate Houses                                                     | = | 200                   |
| Circulation Areas                                               |   |                       |
| Lifts                                                           | = | 100                   |
| Corridors, passageways, stairs                                  | = | 100                   |
| Escalators, revelators                                          | = | 150                   |
| Staff Rooms                                                     |   |                       |
| Offices                                                         | = | 300                   |
| Changing, locker and cleaners' room,<br>Cloak rooms, lavatories | = | 100                   |
| Rest Rooms                                                      | = | 150                   |
| Staff Restaurants                                               |   |                       |
| Canteens, Cafeterias, dining rooms, mess rooms                  | = | 200                   |
| > Communication                                                 |   |                       |
| Switch board rooms                                              | = | 300                   |
| Telephone, apparatus rooms                                      | = | 150                   |
| Telex room, post rooms                                          | = | 500                   |
| Reprographic room                                               | = | 300                   |
| Education                                                       |   |                       |
| Assembly Halls                                                  | = | 200-500 (average 300) |
| Teaching Places                                                 | = | 200-500 (average 300) |
| Lecture Theatres                                                | = | 200-500 (average 300) |
| Seminar Rooms                                                   | = | 300-750 (average 500) |
| Art Rooms                                                       | = | 300-750 (average 500) |
| Needle Work Rooms                                               | = | 300-750 (average 500) |
| Laboratories                                                    | = | 300-750 (average 500) |
| Libraries                                                       | = | 200-500 (average 300) |
| Music Rooms                                                     | = | 200-500 (average 300) |
| Sports Halls                                                    | = | 200-500 (average 300) |
| Workshops                                                       | = | 200-500 (average 300) |

#### **10.5 ANNEXURE-5: ENERGY MONITORING AND ACCOUNTING**

**Present Energy Monitoring & Accounting System:** There is a proper metering system for the purchased power. However, the data related to the power generated using DG sets is not being monitored on a monthly basis. There are no prescribed formats available to maintain such records. As a result of this, there is no periodic performance analysis of the energy consumption in the building.



#### **Recommended Energy Monitoring & Accounting System**

Energy Management should be seen as a continuous process. Strategies should be reviewed annually and revised as necessary. The key activities suggested have been outlined below:

- Clear accountability for energy consumption needs to be established, appropriate financial and staffing resources must be allocated and reporting procedures initiated. An energy management programme requires commitment from the whole organization in order to be successful.
- A record of Energy consumption both Electrical and Thermal must be kept and monitored on a regular basis. For this, sub meter on the DG set is required. This will enable an overview of energy use and its related costs, as well as facilitating the identification of savings that might otherwise not be detected. The system needs to record both historical and ongoing energy use, as well as cost information

from billing data, and capable of producing summary reports on a regular basis. This information will provide the means by which trends can be analyzed and reviewed for corrective measures.

- Some facts and figures related with energy may be displayed on boards or **posters** in the premises, to create awareness among the workmen and staff. A key ingredient to the success of an energy management program is maintaining a high level of awareness among staff. This can be achieved in a number of ways, including formal training, newsletters, posters and publications. It is important to communicate program plans and case studies that demonstrate savings, and to report results at least at 12-month intervals. As an incentive, new ideas and implementation of energy saving point must be recognized and awarded.
- The findings and **implementation status of Energy audits** should be reviewed periodically/annually for further action plan.

| Particulars                         | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Actual Demand<br>(KVA)              |     |     |     |     |     |     |     |     |     |     |     |     |
| KWH<br>Consumption                  |     |     |     |     |     |     |     |     |     |     |     |     |
| KVAh<br>Consumption                 |     |     |     |     |     |     |     |     |     |     |     |     |
| Operating<br>Power factor           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fixed Demand<br>Charges (Rs)        |     |     |     |     |     |     |     |     |     |     |     |     |
| Energy<br>Charges (Rs)              |     |     |     |     |     |     |     |     |     |     |     |     |
| Penalty /<br>Rebate, if any<br>(Rs) |     |     |     |     |     |     |     |     |     |     |     |     |
| Other Charges<br>(Rs)               |     |     |     |     |     |     |     |     |     |     |     |     |
| Total Amount<br>Payable (Rs)        |     |     |     |     |     |     |     |     |     |     |     |     |

Figure 1: Format for Maintaining a Monthly Record of the Purchased Power Consumption

#### **10.6 ANNEXURE-6: CHECKLIST FOR PREVENTIVE MAINTENANCE**

Building Envelope

#### Windows and Skylights

- Replace broken or cracked window panes
- Replace worn weather stripping and caulking
- Replace defective sealing gaskets and cam latches

#### Doors

• Replace worn weather stripping and caulking

#### **Exterior Surfaces**

• Replace worn weather stripping, caulking, and gaskets at exterior joints and at openings for electrical conduits, piping through-the-wall units, and outside air louvers

#### **Stairwells and Shafts**

 Replace worn seals and weather stripping in stairwells on penthouse machine-room doors, in elevator shafts in vertical service shafts and on basement and roof equipment room doors when they are connected by a vertical shaft that serves the building

#### Self-Contained Units (Such as Window and Through-The-Wall Units and Heat Pump

- Clean evaporator and condenser coils
- Clean air intake louvers, filters, and controls
- Keep airflow from units unrestricted
- Replace worn caulking in openings between the units and windows or wall furnace
- Check the voltage to ensure that the unit is operating at full power
- Follow applicable maintenance guidelines for compressors, condensers and fans.

#### Motors, Fans, Pumps, Engines and Turbines

#### Motors

- Check the alignment of the motor to the equipment it drives. Align and tighten as necessary
- Check for and repair loose connections and bad contacts regularly
- Determine the cause of excessive vibration and repair as necessary
- Clean motors regularly

- Lubricate the motor and drive bearings regularly
- Tighten belts and pulleys
- Check for overheating. If overheating is present, check for functional problems or inadequate ventilation and repair as necessary
- Balance three-phase power sources to motors
- Check for over voltage or low-voltage conditions and correct as necessary

#### Fans

- Check for excessive noise and vibration and correct as necessary
- Clean fan blades & Inspect and lubricate bearings regularly
- Inspect drive belts for proper tension. Adjust or replace as necessary to ensure proper operation
- Keep inlet and discharge screens on fans free of dirt and debris

#### Pumps

- Check for packing wear and repack as necessary. Replace glandular packing with mechanical seals
- Inspect bearings and drive belts for wear and binding. Adjust, repair, or replace as necessary

#### Lighting

- Wipe lamps clean at regular intervals. Lamps that are exposed to substantial amounts of dirt, dust, grease, or other contaminants should be cleaned more frequently than lamps in a relatively clean atmosphere
- Maintain luminary efficiency by properly cleaning the reflecting surfaces and shielding media
- Replace lens shielding that has yellowed or become hazy with a clear acrylic lens with good non-yellowing properties. A clear glass lens can be considered if it is compatible with the luminary and does not present a safety hazard
- Clean ceilings, walls, and floors frequently to improve reflective qualities
- If day lighting contributes to lighting, wash windows frequently to maintain illumination levels
- Replace all lamps used for area illumination after they have been in service for a substantial portion (approximately 70 percent) of their rated life, instead of simply replacing lamps one at a time as they burn out.