PHOTOELECTRIC EFFECT PART-II

MRS. MONA SOIN APPLIED PHYSICS B.SC. (HOME SCIENCE) SEMESTER-IV

EINSTEIN'S PHOTOELECTRIC EQUATION ; ENERGY QUANTUM OF RADIATION

Laws of Photoelectric Emission were explained by Einstein on the basis of **Planck's Quantum Theory**.

"Light radiations consist of tiny packets of energy called <u>quanta.</u> One quantum of light radiation is called a <u>photon</u>, which travels with the speed of light."

```
Energy of a photon, E = hv
```

```
h = Planck's constant
```

```
υ = Frequency of light radiations

ONE PHOTON OF
METAL
ONE

SUITABLE LIGHT
SURFACE
PHOTOELECTRON

RADIATION
V
V
```

ONE PHOTON OF LIGHT OF FREQUENCY υ

PHOTOSENSITIVE METAL SURFACE

The energy of the photon(E = hv) is spent in two ways –

- A part of the energy of the photon used in liberating the electron from the metal surface, equal to the work function, ω_0 of the metal
- Rest of energy of photon used in imparting maximum kinetic energy K_{max}, to the emitted photoelectron

i.e.
$$E = \omega_0 + K_{max}$$

If v_{max} = maximum velocity of the emitted photoelectron

m = mass of the photoelectron

Then
$$K_{max} = \frac{1}{2} m v_{max}^2$$

|Now| = hvAlso $E = \omega_0 + K_{max}$ $h\upsilon = \omega_0 + \frac{1}{2}mv_{max}^2$ Therefore Work function, ω_0 , of the metal is a characteristic of the metal and does not depend upon the nature of incident radiation. Also called **Threshold Energy** of the metal If υ_0 = Frequency corresponding to threshold energy of the metal(threshold frequency) Then $\omega_0 = h \upsilon_0$ So, from equation 1 Einstein's Photoelectric Equation $hv = hv_0 + K_{max}$ Or

Explanation / Deduction of laws of Photoelectric Emission from Einstein's Photoelectric Equation

One photon ejects one photoelectron from a metal surface

Ι

- Number of photoelectrons emitted per second depends upon the number of photons falling on the metal surface per second ,which in turn depends on the intensity of the incident light
- If intensity of light is increased, the number of incident photons increases, resulting in increase in the number of photoelectrons ejected. This is the First law of photoelectric emission.

• From equation 3, IF $v < v_0$, maximum kinetic energy is negative, which is impossible

Photoelectric emission does not take place for the incident radiation below threshold frequency. This is <u>Second law of photoelectric emission</u>.

III

- From equation 3, IF $v > v_0$, maximum kinetic energy directly proportional to frequency
- Maximum kinetic energy of photoelectron depends only on the frequency or wavelength of incident light
- Increase in intensity of incident light radiation leads to increase in the number of incident photons falling per second on the metal surface. This is Third law of photoelectric emission.

\underline{IV}

- Phenomenon of photoelectric emission has been conceived as an effect of an elastic collision between a photon and an electron inside the metal
- Absorption of energy by the electron of metal from the incident photon is a single event involving transfer of energy at once
- There is no time lag between the incidence of photon and the ejection of photoelectron. This is Fourth law of photoelectric emission.

Consequences of Photoelectric Emission

- Photoelectric emission is possible only if the incident light is in the form of packets of energy
- Each packet of energy having a definite value, more than the work function of the metal
- This implies that light is not of wave nature but of particle nature
- Due to this reason, photoelectric emission was accounted by the <u>Quantum</u> <u>Theory of Light i.e. Particle Nature of Light.</u>

END OF UNIT-I